Inteligencia Artificial 2022-09-25T11:31:43+02:00 Editor Open Journal Systems <p style="text-align: justify;"><span style="color: #000000;"><strong><em><a style="color: #003366; text-decoration: underline;" href="" target="_blank" rel="noopener">Inteligencia Artificial</a></em></strong><span id="result_box" class="" lang="en"> is an international open access journal promoted by <span class="">the Iberoamerican Society of</span> Artificial Intelligence (<a href="">IBERAMIA</a>). </span></span>Since 1997, the journal publishes high-quality original papers reporting theoretical or applied advances in all areas of Artificial Intelligence. <span style="color: rgba(0, 0, 0, 0.87); font-family: 'Noto Sans', -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen-Sans, Ubuntu, Cantarell, 'Helvetica Neue', sans-serif; font-size: 14px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">There are no fees for subscription, publication nor editing tasks<span class="VIiyi" lang="en"><span class="JLqJ4b ChMk0b" data-language-for-alternatives="en" data-language-to-translate-into="es" data-phrase-index="0">.</span></span> <span class="VIiyi" lang="en"><span class="JLqJ4b ChMk0b" data-language-for-alternatives="en" data-language-to-translate-into="es" data-phrase-index="0">Articles can be written in English, Spanish or Portuguese and <a href="">will be subjected</a> to a double-blind peer review process.</span></span> <span class="VIiyi" lang="en"><span class="JLqJ4b ChMk0b" data-language-for-alternatives="en" data-language-to-translate-into="es" data-phrase-index="0">The journal is abstracted and indexed in several <a href="">data bases</a>.</span></span><br /></span></p> Ontology-Based Traffic Accident Information Extraction on Twitter In Indonesia 2022-02-25T02:58:39+01:00 Nur Aini Rakhmawati Yasin Awwab Ahmad Choirun Najib Ahmad Irsyad <p>Traffic accidents become one of the events that often occur in Indonesia. From the three-monthly report by the Indonesian National Police Traffic Police, there are about 25,000 traffic accidents. Many social media users, especially Twitter, share information about traffic accidents. Twitter has various information regarding traffic accidents. Therefore, this study aims to process and map information about traffic accidents contained on Twitter in Indonesia language.&nbsp; We use the domain ontology and Named-Entity Recognition for the data extraction process. Named-Entity Recognition is used for obtaining keywords from a tweet based on class categories such as actor, time, location, and information on the cause of the accident. This research generates a Named Entity Recognition (NER) model that can provide a reasonably accurate level of accuracy. Also, we create an ontology that can categorize the causes of traffic accidents based on the Directorate General of the Land Transportation Office, Indonesia. We found that the traffic accidents are generally caused by inadequate vehicle conditions with the main problem in the vehicle caused by brake failure, while environmental factors rarely cause traffic accidents. Moreover, the vehicle is the subclass that mostly appears in the tweets, where car is the most popular actor, followed by truck and motorcycle.</p> 2022-09-25T00:00:00+02:00 Copyright (c) 2022 Iberamia & The Authors A Machine Vision Approach for Recognizing Coastal Fish 2022-07-11T23:07:56+02:00 Afiq Raihan Israt Sharmin B M Marjan Khan Md. Ismail Jabiullah Md. Tarek Habib <p>Coastal fish is one of the prominent marine resources, which takes a necessary role in the economic growth of a country. Because of environmental issues along with other reasons, not only most of the marine resources are diminishing but also many coastal fishes are getting extinct gradually. As a result, the young peoples have insufficient knowledge of coastal fish. This issue can be solved with the use of vision-based technologies. To deal with this situation, a coastal fish recognition system based on machine vision is conceived, which can be approached by the images of coastal fish that are captured with a portable device and identify the fish to recognize fish. Numerous experimental analyses are executed to exhibit the benefit of this proposed expert system. In the beginning, conversion of a color image into a gray-scale image occurs and the gray-scale histogram is developed. Using the histogram-based method, image segmentation is conducted. After that, a set of thirteen features comprising of four classes is extracted to be fed to a classifier. For reducing the number of features, PCA is applied. To recognize coastal fish, three cutting-edge classifiers are performed, where k-NN provides a potential accuracy of up to 98.7%.</p> 2022-09-25T00:00:00+02:00 Copyright (c) 2022 Iberamia & The Authors