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Abstract

Epilepsy is a neurological disorder characterized by recurrent seizures, which can affect individuals of all age
groups, but infants and older individuals are particularly vulnerable. Sudden epileptic attacks can pose significant
risks and be life-threatening, impacting the overall quality of life of affected individuals. With the progress made
in medical science, Electroencephalography (EEG) has emerged as a valuable tool for diagnosing and predicting
seizure occurrences. The availability of wearable EEG devices, including caps and helmets, has become increasingly
prominent in the market. As a result, there has been a recent surge in the development of deep learning-based
systems. These systems are helpful for diagnosis in hospital settings and for mobile applications that provide
timely warnings and predictions regarding seizure onset. Most of the existing state-of-the-art (SOTA) approaches
focus on distinguishing between healthy and epileptic patients. Some studies categorize individuals into three
classes: healthy, experiencing the onset of a seizure, or currently having a seizure, specifically focusing on mobile
applications. However, limited literature is available on the five-class problem, which is valuable for localization
and diagnosis in hospitals and mobile applications. In this regard, we propose our novel model, named EpilConNet,
and conduct extensive experiments on a real-world dataset to demonstrate its efficacy in all modes of classification.
EpilConNet results in a significant increase of 4% in accuracy in five-class classification.

Keywords: Epilepsy, Electroencephalogram (EEG), Deep learning, Seizure, Diagnosis, Concatenation network,
Five-mode classification.

1 Introduction

Seizures are sudden and unexpected transient changes in the brain’s electrical functioning, resulting in
various physical and mental manifestations. These can arise from a multitude of factors, including epilepsy,
head injuries, brain infections, strokes, genetic disorders, or other underlying medical conditions. During
seizure, individuals may experience convulsions (involuntary muscle movements), loss of consciousness,
sensory changes (such as tingling or strange taste or smell), as well as emotional or cognitive changes
(memory loss, mood swings, or hallucinations). Seizure episodes can exhibit considerable variation in
duration and intensity. Some episodes may be brief, lasting only a few seconds or minutes, while others
can persist for several minutes or even longer. The aftermath of seizure also entails a recovery period
characterized by fatigue, confusion, headaches, or muscle soreness ([4]).
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It is essential to emphasize that epilepsy is not the sole cause of all seizures. Recurring and unprovoked
seizures characterize epileptic seizures. Epilepsy, derived from the Greek term “Epilepsia”, is a neurological
disorder, often without a clear underlying cause, and affects 1% of the world’s population. While epilepsy
can affect individuals of all ages, it is more commonly diagnosed in infants and older individuals. Small
children can sustain injuries from sudden epileptic seizures while engaging in physical activities such as
playing games, swimming, and cycling. Similarly, elderly individuals, who are more fragile and vulnerable,
face the risk of life-threatening accidents resulting from sudden epileptic attacks. Therefore, timely
prediction and alarming of the onset of an epileptic seizure can be a blessing in disguise.

Electroencephalography (EEG) can serve as an effective tool for diagnosing and predicting epileptic
seizures. The term electroencephalography originates from the Greek word encephalos, which translates
to - what is inside the head. In the late 19th century, scalp electrodes were utilized to detect electrical
signals in the brain. As technology has progressed over the years, there have been gradual advancements,
resulting in the discovery of wearable EEG devices for the wrist and chest. Notably, Sogamoso et al. [30]
have further reduced electrode weight by employing graphene-based material. Additionally, wearable caps
and EEG headsets that can transmit captured signals to Android devices via Bluetooth technology have
been developed ([28], [19]).

While abundant literature is available on the binary classification of EEG data into healthy and
epileptic patients ([22 3], 34]), recent research has focused on developing mobile-based alarming and
safety applications that notify individuals about the onset of seizures ([10, [, [44]). These applications
utilize machine learning models to classify EEG signals into healthy conditions before the beginning of
seizure and signals during seizure. However, for improved diagnosis and localization of the affected regions
of the brain, there is a need to classify EEG signals into five distinct classes (as discussed in Section
. Unfortunately, this research direction has received limited attention due to the complexity and
difficulty of distinguishing between the different classes within an EEG signal ([10, [0, [I5]). The primary
objective of this work is to propose an efficient model that addresses the concern of solving different
types of classification problems in epileptic research and can be seamlessly integrated into different mobile
and web applications to provide highly efficient seizure prediction systems, contributing to world-class
advancements in this field. To this, contributions of our work are summarized below.

e We propose a novel neural architecture which we call, EpilConNet for EEG signal classification.

EpilConNet outperforms existing state-of-the-art (SOTA) methods in five-class problem achieving a
significant improvement of 4% in accuracy.

The proposed model also outperforms existing SOTA methods in ternary classification tasks.

In binary classification problem, £pilConAet exhibits comparable training performance to SOTA
techniques but surpasses SOTA by 3% in test accuracy.

The model shows lower susceptibility (robustness) to hyper-parameter tuning, including parameters
such as the learning rate.

Roadmap: The remainder of the paper organizes as follows. Section [2| reviews existing literature.
Section [3] describes the data considered for current research analysis and methodology of the proposed
concatenation network EpilConNet. Section [ validates the efficacy of EpilConNet against SOTA methods.
Section [A] concludes the work.

2 Related Work

Epilepsy seizure prediction has been the subject of intense research and development in recent years
([23, 25]). The quest for reliable and efficient methods in epilepsy seizure prediction has led to a multitude
of research endeavours, encompassing various domains such as wave analysis, computer-aided diagnostics,
and machine learning-based models ([20]).

The work in [22] utilizes machine learning techniques, including multi-layer perceptron (MLP), principal
component analysis (PCA) with random forests, linear discriminant analysis, and PCA with artificial
neural network (ANN). They demonstrate that the PCA with ANN method outperforms other approaches
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in the binary classification of healthy versus unhealthy individuals. In a slightly different direction,
focusing on binary classification between unhealthy epileptic patients before and during seizures, work
in [3I] proposes a feature scaling technique fed into a three-layered neural network. [34] carries out
similar work using a random forest classifier. Furthermore, [7] pursues a similar approach utilizing deep
convolutional networks, Bi-LSTM, and RNN. [44] then further improve upon these methods by employing
convolutional neural networks (CNN) on raw signals for binary classification. The authors also explore
the ternary problem of classifying signals into healthy individuals, epileptic patients before seizures, and
epileptic patients during seizures. The work in [8] proposes an innovative system for accurately classifying
epileptic EEG signals using an information-fusion-based approach. The algorithm combines information
and determines feature weights based on the information gain ratio. Finally, a probabilistic neural network
and the k-nearest neighbour were used for classification. Authors in [20] proposes a ensemble based
extreme learning method based on linear discriminant analysis, this proposed feature extraction method
significantly outperformed other related state-of-the-art present for classification. Recent work in [37]
employs automatic preprocessing method using the idea of a common average reference to remove artefacts
from the signals, followed by the application of LSTM for binary classification.

With the advent of wearable devices and the integration of machine learning algorithms, the potential for
real-time epilepsy seizure prediction has become increasingly tangible [I3], revolutionizing the management
of this neurological disorder. Noteworthy work in this direction includes EpilepsyNet, an interpretable
self-supervised encoder-decoder model designed for wearable devices, proposed by [14].

Recent advancements in wavelet processing methods, coupled with deep learning, have also been
explored in the diagnosis and prediction of epilepsy [27]. Several notable works in this area include
[38, [T, 136, 29, 12, [35]

One major limitation of the works mentioned above is that they primarily focus on binary or ternary
classification in epilepsy diagnosis and prediction. However, the comprehensive management of epilepsy
often requires the localization of epileptic regions to facilitate targeted medication. Consequently, this
introduces a five-class classification problem (for more details, refer to Section). Ounly a few studies
have addressed this specific direction. Notable existing works include [9, [I0]., who propose EpilNet, a
1D-CNN network that outperforms state-of-the-art (SOTA) methods, and [I5]., who utilize an LSTM-based
approach. Building upon these contributions, we propose a novel model that performs effectively for the
five-class problem and surpasses the SOTA performance in binary and ternary classification. We now next
look into the proposed method architecture and methodology.

3 Material and Methodology

3.1 Dataset

The Epileptic Seizure Recognition Dataset (ESRD) is publicly available in the UCI repository, gathered by
the Epileptology Department at Bonn University [2]. This dataset consists of five different folders, treated
as b different classes, and each folder consists of 100 files. Each file is a single individual’s brain activity
or EEG signal recording. The duration of each EEG signal recording is 23.6 seconds recorded using a
128-channel amplifier at a sampling rate of 173.61 Hertz. Thus, the signal comprises 4097 (23.6 x 173.61)
data points, which are segmented into 23 chunks, each representing 1 second. Consequently, the dataset is
structured into 23 data row samples, each with a vector length of 178 signal points. After capturing the
signals, they are converted from analogue to digital format using an analogue-to-digital converter.

The motivation to utilize the ESRD dataset is rooted in its inclusion of single-channel EEG data, which
is adeptly compatible with small wireless sensors, thereby enhancing the efficiency of EEG data processing
[16]. The dataset comprises 11,500 samples, each representing a vector in the space R1"®, corresponding
to the 128 channels of the EEG signals. Additionally, each sample is associated with a class label ranging
from A to E, denoted as 5 to 1, respectively. Note that these classes are sometimes referred to as Z, O,
N, F, and S due to the naming conventions used in the source folder structure. Figure [I] displays the
raw signals (for a duration of 1 second) of different classes, randomly sampled from each class. Class
A corresponds to signals from healthy individuals with open eyes, while class B represents signals from
healthy individuals with closed eyes. Class C and D contain signals from unhealthy individuals during
seizure-free periods, specifically from the hippocampal and epileptogenic regions, respectively. Class E
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Figure 1: The plot shows the EEG brain signals for the ESRD dataset. The first row showcases random
instances of signals from unhealthy individuals, with column 1 representing class 1, column 2 representing
class 2, and column 3 representing class 3. The second row includes random instances of signals from
healthy brains, with column 1 representing the eyes closed(Patient had their eyes closed while recording
the EEG signal) and column 2 representing the eyes open(Patient had their eyes opened while recording
the EEG signal). The last column illustrates the dataset distribution for each class in the ESRD dataset

[21].

represents signals from an unhealthy individual during an active seizure. Furthermore, Figure [1]| also
demonstrates the uniform distribution of samples across the different classes, highlighting the balanced
nature of the dataset. It is important to note that there are no missing values in the data, making it
directly usable for feature extraction and machine learning-based models.

3.2 Pre-processing

The literature on seizure prediction has explored the problem from various perspectives. In certain
scenarios, the objective is to determine whether a person is healthy (classes A and B) or an epileptic
patient (classes C, D, or E). This distinction becomes particularly important, for example, when admitting
individuals to hospitals to confirm if their symptoms are related to epilepsy. We call this as Task 1. On
the other hand, in applications focusing specifically on the onset of seizure, it is necessary to examine
specific subsets formed by grouping classes, namely A, B, C, D, and E. We will discuss Tasks 2 and 3 in
the experimental section later in Section [4]

It is noteworthy that accurately identifying the affected cortical region is crucial for effectively managing
and preventing future seizures. This requirement necessitates the utilization of all five classes. Furthermore,
in mobile applications that store seizure EEG signals during episodes for subsequent diagnosis, capturing
the location of the brain that exhibits abrupt signals becomes vital. Consequently, the classification of all
five classes becomes necessary in such scenarios. However, it is important to acknowledge that classifying
all five classes poses challenges, as EEG signals are complex in nature, and different states (or classes) are
highly variable across patients.

3.3 ¢&pilConNet: Epilepsy Concatenation Network

Let us now delve into our model, called Epilepsy Concatenation Network (EpilConAet) illustrated in Figure
and explore its complexities. EpilConNet is a hybrid model that combines parallel and sequential layers.
It can accurately predict the onset of seizures to trigger alarms and can also find utilization in hospitals
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for diagnosing and localizing epilepsy. The core architecture of £pilConANet consists of an input layer
with a shape of (178, 1), followed by six parallel layer blocks called DenseBlock which gets concatenated
into a single concatenation layer after feature extraction. These DenseBlocks take a parameter ‘n’ and
features from the input layer, generating feature maps for the subsequent sequential model. The number
of neurons is initially fixed upto 4 layers according to the number of neurons defined, then gets fixed to

128 neurons for the next two layers.

' | ' | ! !
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Figure 2: Core architecture of EpilConANet. The parameter Alpha () is the default parameter in Leaky
ReLLU literature.

Subsequently, all the feature maps are combined seamlessly through concatenation, hence creating
a unified and comprehensive learned representation embedding vector. These learned features are then
passed through a dense layer with 64 neurons, which is linearly connected and utilizes a leaky ReLU
activation function. To address the issue of internal covariance shift, the network’s feature vectors undergo
batch normalization. Additionally, a dropout layer is incorporated towards the end to mitigate potential
overfitting problems. The final layer of the model is a softmax layer, providing classification probabilities
for different classes.

Exploring the architecture of the DenseBlock shown in Figure 3] The DenseBlock first passes
through Batch Normalization to speed up the training. Then it comprises a sequence of blocks composed
of neurons ranging from ‘n’(variable adjusted according to requirement) to 128 neurons as moved towards
the end of the block. Each dense layer utilizes a leaky RELU activation function with an « value of 0.2 (a
default parameter of leaky ReLU) and is followed by a dropout of 0.4 layer to prevent over-fitting. Next,
we will compare the proposed architecture with existing state-of-the-art (SOTA) approaches on the ESRD
dataset.

4 Experimental Analysis

In this section, we will now evaluate the effectiveness of our proposed approach by comparing it to various
state-of-the-art (SOTA) methods on benchmarking real-world dataset. The complete experimental code
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Figure 3: Architecture of Dense Block in EpilConNet. The parameter Alpha («) is the default parameter
in Leaky ReLU literature.

is provided anonymously herdﬂ The dataset utilized in this study has been thoroughly examined in
Section We opt for no feature extraction, feeding raw signals directly into the model to ensure
architectural robustness at the hardware level for practical diagnostic purposes. Additionally, this design
allows clinicians to effortlessly input raw data into the system, eliminating the need for pre-processing
stages and longer waiting time before classification (or detection). Also, the results can be showcased
without necessitating alterations to the model architecture and training algorithm even in scenarios
involving multi-channel EEG data, thereby rendering it well-suited for real-time monitoring purposes.
Experimental Setup: All experiments are executed on Google Colaboratory Notebook, 24GB RAM
with Python 3. £pilConANet requires additional hyper-parameters, namely learning rate, epochs, and
batch size. These are set to 0.0008, 500, and 700, respectively, across all classification problems using the
EpilConNet model. The parameters for the baseline SOTA methods remained the same as reported in
their original papers. The train test split is 80:20 and is consistent with previous literature [9] [10].

To address various applications, we categorize the problem of epileptic seizures into distinct tasks,
which are as follows:
Task 1 (Binary Classification): In this task, our objective is to classify EEG signals from an individual as
either belonging to a healthy individual or an individual with epilepsy. This task is particularly useful for
initial diagnosis in hospitals. For classification purposes, we group class A and B together as one class
and class C, D, or E as another class.
Task 2 (Ternary Classification): This task plays a crucial role in predicting the onset of seizures for
TIoT-based and alarming applications. To achieve this, we grouped classes A and B together as one class.
class C and D form the second class, which signifies the triggering of a seizure. The third class, denoted
by class E, represents the signals recorded during an epileptic seizure. This third class is particularly
valuable for calling nearby emergency services in the event of prolonged seizures.
Task 3 (5-mode Classification): In this task, we treat each class in the original dataset as a separate class.
The separation of class C and D aids in the further localization of the epileptic region in the brain.

The task division is consistent with prior literature [0, [10, 41} [44] and are compared on following
metrics:

4.1 Performance Metrics

e Accuracy (Acc): This metric represents the ratio of correctly predicted instances to the total
number of instances.

Ace — Number of Correct Predictions x 100 (1)
- Total Number of Instances

e Loss: This is a measure of the difference between predicted values and actual values, used during
training to guide the optimization process. Generally, as the loss decreases, accuracy improves.

Thttps://github.com/sg-research08/EpilConNet.git
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Specifically, we use the categorical cross-entropy loss function (£(-)), defined for N classes as:
N
L(y,9) == yilog(ih) (2)
i=1

Here, y represents the true distribution (ground truth) of the categories, and § represents the
predicted distribution of the categories, often obtained from a neural network or other classifier.
These are typically represented as one-hot encoded vectors.

e Precision: This metric measures the accuracy of positive predictions made by a model. It is the
ratio of true positive predictions to all instances predicted as positive.
TP

Precision — — & 3
recision = 55 (3)

Where True Positives (TP) are instances correctly predicted as positive, and False Positives (FP)
are instances incorrectly predicted as positive.

e Recall: Also known as sensitivity or the true positive rate, this metric measures the ability of a
model to correctly identify all relevant instances out of the total actual positive instances.
TP

Recall = m (4)

Where False Negatives (FN) are instances incorrectly predicted as negative when they are actually
positive.

e F1-Score: This composite metric combines precision and recall into a single measurement to
comprehensively assess a model’s performance. It is particularly useful when class distributions
are imbalanced or the costs of false positives and false negatives are significant. The F1-Score is

calculated as follows: Procisi Recall
recision X Reca
Fi- =2
Score x Precision + Recall ®)

A good machine learning model has high accuracy (correspondingly lower loss), high precision, recall, and
F1-score.

We begin by comparing the performance of our EpilConNet model with SOTA methods using the
accuracy metric. The training and testing accuracies are presented in Tables [1| and [2] respectively. In the
binary classification task, our £pilConAN et model achieves similar performance to SOTA during training
and outperforms all other methods during testing. In the case of ternary classification, where limited
research has been conducted, our £pilConNet model achieves successful results. For the crucial five-mode
classification task, our EpilConNet model surpasses the SOTA methods with a 4% increase in accuracy
during training, while maintaining comparable accuracy during testing.

4.2 Analysis for Task 1: Binary Classification

In this section, we evaluate the performance of our £pilConNet model prevelant metric in literature,
including precision, recall, and Fl-score. The class-wise results can be found in Table [3| while the average
results are presented in Table [4]

We also examine the training and testing trends of our £pilConNet model in binary classification to
monitor the issue of over-fitting. The trends for both training and testing are depicted in Figure

4.3 Analysis for Task 2: Ternary Classification

The precision, recall and F1-Score in ternary setting is available in Table [5] and Table[6] The learning
curves for train and test phase are illustrated in Figure[5l The learning curves exhibit a smooth progression
without any indications of over-fitting. The confusion report for the problem is also available in the same
Figure.
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Model/SOTA Binary Classification | Ternary Classification | 5-mode Classification
EpilConNet (Proposed) 99.95% 99.87% 98.61%
Hybrid CNN-LSTM [18] 94.98% - -
Hybrid 1D-CNN [11] 100% 99% 94%
Attention based CNN [40] - 98.89% -
EpilNet [10] 95.15% - 82.58%
‘Woodbright et al [39] 98.65% - -
1D CNN-LSTM [41] 99.39% - 82.00%
Gupta et al[9] 99.9% - -
CNN with feature fusion [6] 99.0% - -
LSTM [17) 99.0% - -
Chanu et al [5] 99.2% - -
Zhao et al[43] 97.63 - 99.52% 96.73 - 98.06% 93.55%
Turk and Ozerdem|[32] - - 93.60%
Zahra et al[42] - - 87.2%
Bhattacharya et al|3] 99% 98.60% -
Tzallas et al[33] 100% - 89.00%
Wang et al[38] - 95.4% -
Shankar et al[22] 97.55% - -
Thara et al[3T] 97.21% - -
Tzimourtla et al[34] 99.16% 95.84% 82.25%
Amin et al[I] 100.0% - -

Table 1: Training performance comparison of £pilConNet against SOTA methods in different settings.

Model/SOTA Binary Classification | Ternary Classification | 5-mode Classification
EpilConNet (Proposed) 97.46% 91.65% 76.34%
Hybrid CNN-LSTM [I8] 82.21% - -

EpilNet [10] 94.56% - 79.13%

Table 2: Testing performance comparison of £pilConNet against SOTA methods in different settings.

4.4 Analysis for Task 3: 5-mode Classification

Similar observations for 5-mode classification are summarized in Table [7] Table [ and Figure [6] The
consistent gap observed between the training and testing curves show that the model is converging
effectively. The confusion matrix for 5-mode problem is also available in the same Figure.

Class | Precision | Recall | F1-Score
0 0.98 0.99 0.98
1 0.96 0.91 0.94

Table 3: Class-wise precision, recall and F1-Score on binary classification.

Performance Metric (Based on Average Score) | Precision | Recall | F1-Score
Macro Average 0.97 0.95 0.96
Weighted Average 0.97 0.97 0.97
Micro Average 0.97 0.97 0.97

Table 4: Average performance metric namely precision, recall and F1-Score for binary classification.
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Figure 4: The figure shows plot for EpilConNet (a) accuracy (b) loss. (c¢) Confusion matrix for binary
classification.

Class | Precision | Recall | F1-Score
1 0.94 0.89 0.91
2 0.98 0.92 0.95
3 0.87 0.94 0.90

Table 5: Class-wise precision, recall and F1-Score on ternary classification.

Performance Metric (Based on Average Score) | Precision | Recall | F1-Score
Macro Average 0.94 0.89 0.91
Weighted Average 0.98 0.92 0.95
Micro Average 0.87 0.94 0.90

Table 6: Average performance metric namely precision, recall and F1-Score for ternary classification.
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Figure 5: The figure shows plot for £pilConNet (a) accuracy (b) loss. (¢) Confusion matrix for ternary
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classification.
Class | Precision | Recall | F1-Score
1 0.99 0.91 0.95
2 0.72 0.65 0.68
3 0.65 0.76 0.70
4 0.80 0.72 0.75
5 0.70 0.78 0.74

Table 7: Class-wise precision, recall and F1-Score for 5-mode classification.
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Performance Metric (Based on Average Score) | Precision | Recall | F1-Score
Macro Average 0.77 0.76 0.76
Weighted Average 0.77 0.76 0.77
Micro Average 0.76 0.76 0.76

Table 8: Average performance metric for 5-mode classification.
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Figure 6: The figure shows plot for EpilConNet (a) accuracy (b) loss. (¢) Confusion matrix for 5-mode
classification.

4.5 Ablation Study

In this subsection we conduct an ablation study to demonstrate the proposed model’s generalization
capability on smaller training data scenarios that are quite evident in medical diagnosis. We report the
training and testing accuracy over ten independent runs. Each run is executed with a different value to
ensure that the study captures the diversity of the sub-sampled dataset. The study is conducted for all
three different settings: binary classification, ternary, and 5-mode classification, and results are reported
in Figure[7] (a), (b) and (c) respectively. It can be observed from the reported performance graphs that in
binary classification, even with just scarce availability of around 20 to 40% of complete data, the proposed
model is able to achieve training accuracy of orders comparable to state-of-the-art (SOTA) methods.
Moreover, the testing accuracy has quite stable performance even at 50% availability of data and remains
considerably well around 90% even with just 20% sub-sampled dataset. Next, as the problem complexity
slightly increases in ternary classification, the training performance remains considerably high. There is a
slight drop in testing accuracy, but it remains above 83% and goes as high as the mean value of 91.6%. In
the most challenging scenario of 5-way (or mode) classification, even with only 20 to 30% of the dataset
available, the training accuracy remains comparable to the state-of-the-art (SOTA) performance shown in
Table 1, which is based on training with 100% of the dataset.
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Figure 7: The figure shows the plot for EpilConNet’s accuracy for (a) binary, (b) ternary, and (c) 5-mode
classification on varying dataset sizes.
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5 Discussion

In this section, a detailed discussion is carried out for both results in Table [I| and

5.1 Comparison against binary classification

Table [1] outlines the initial work in epilepsy seizure detection for signal classification into seizure and
non-seizure classes by [33]. Their utilization of time-frequency analysis resulted in a 100% accuracy
in training, with a lack of reported testing performance, suggesting potential overfitting. Subsequent
advancements in technology and machine learning algorithms led [3] to extract features through wavelet
transformation, achieving a 99% accuracy with support vector machines (SVM). In a close approach, [34]
employed wavelet transform in all three settings, achieving reasonable accuracy. Another study by [31]
adopted a similar idea by utilizing seven feature extraction methods fed into a three-layer deep neural
network, demonstrating comparable performance. The rise of ensemble learning, exemplified by [41], [IT], (18]
and [I], showcased stacked ensembles of 1d convolutional networks with long short-term memory (LSTM)
networks and weighted ensembles of various ML methods (SVM, Naive Bayes, k-Nearest Neighbor, and
Multi-Layer Perceptron). All these ensembles achieved accuracy close to optimal classification as the
binary problem is less challenging than other settings, as visualized in Figure [Il The surge in interest
for unsupervised algorithms motivated [22] to employ PCA followed by neural networks, with a slight
performance decrease of 2-3%. Later, [5] incorporated self-organizing neural networks and Multi-Layer
Perceptron with genetic algorithms, enhancing accuracy in unsupervised learning. In our proposed
EpilConNet, leveraging a parallel architecture played a crucial role in achieving comparable train and
test accuracy, surpassing the SOTA performance. Additionally, [39] incorporated explainability into
binary classification models through decision trees, achieving 98% accuracy. However, there remains scope
for improvement and achieving SOTA binary classification models while simultaneously providing user
explanations.

5.2 Comparison against ternary classification

In this context, similar observations emerge, with initial works employing wave analysis for EEG data
classification, achieving an accuracy of 95.84% ([34]) and 98.60% ([3]). A slightly different approach was
adopted by [38], utilizing gradient boosting methods with symlet wave processing for feature extraction.
On similar lines to binary classification, integrating 1d convolution contributed to higher accuracy.
Nevertheless, our proposed EpilConANet architecture surpasses the SOTA performance on both training
and test data, highlighting the efficacy of our approach across the complete dataset and facilitating the
achievement of a better-generalized model.

5.3 Comparison against 5-mode classification

Expanding the classification framework to encompass all five classes, [42] incorporated instantaneous
amplitude and EEG data frequency. This approach marked a starting achievement, yielding an accuracy of
87.2% in the 5-class setting. Seeking performance enhancement, [32] employed Morlet Continuous Wave to
transform EEG signal data into scalogram images, which, when fed into a two-convolution-layer network,
resulted in a substantial performance boost to 93.6%. Building upon this progress, [43], [, [I0] harnessed the
power of 1d convolutional networks, pushing the accuracy further to 94%. However, integrating a combined
parallel and sequential model proposed EpilConANet proved pivotal in extracting superior features. This,
coupled with the utilization of leaky ReLU, contributed to a notable increase of approximately 3% in
train and test accuracy, showcasing improved epilepsy diagnosis capabilities.

6 Conclusion and Future Directions
This paper proposes a novel EpilConANet model that outperforms current SOTA approaches on all binary,

ternary, and 5-mode classifications. The model can be used for quick diagnosis at first help (healthy vs
epileptic case), in mobile applications for the onset of seizure prediction (ternary), and for localization
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and diagnosis at hospitals (5-mode problem). The model is easy to tune for hyper-parameters, such as
the learning rate across all the classification problems. An interesting future direction is integrating this
model into real-world systems, providing a comprehensive solution for epilepsy diseases. Apart from those
mentioned above, other immediate future directions can be combining the model with wavelet analysis for
feature extraction and analyzing performance under reduced. EEG capture length ([24]).
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