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Abstract One of the most prevalent forms of cancer worldwide is skin cancer. Determining disease characteristics 
necessitates a clinical evaluation of skin lesions, but this process is limited by long time horizons and a multiplicity 
of interpretations. Deep learning techniques have been created to help dermatologists with these issues as a higher 
patient survival rate depends on the early and precise detection of skin cancer. This research proposed a new 
approach for binary classification of dermoscopic images for skin cancer. The Improved Grey Wolf Optimizer (I-
GWO) is used in this technique to fine-tune some hyperparameters’ values of various pre-trained deep learning 
networks to maximize results. SqueezeNet, ShuffleNet, AlexNet, ResNet-18, and DarkNet-19 are the pre-trained 
networks that were employed. We tested the MED-NODE and DermIS databases in our investigation. 
Concerning the MED-NODE and DermIS datasets, the proposed method's highest accuracy results are 100% and 
97%, respectively. 
 
Resumen Una de las formas de cáncer más prevalentes en todo el mundo es el cáncer de piel. La determinación de 
las características de la enfermedad requiere una evaluación clínica de las lesiones cutáneas, pero este proceso está 
limitado por horizontes temporales prolongados y una multiplicidad de interpretaciones. Se han creado técnicas de 
aprendizaje profundo para ayudar a los dermatólogos con estos problemas, ya que una mayor tasa de supervivencia 
del paciente depende de la detección temprana y precisa del cáncer de piel. Esta investigación propuso un nuevo 
enfoque para la clasificación binaria de imágenes dermatoscópicas para el cáncer de piel. El Optimizador de lobo 
gris mejorado (I-GWO) se utiliza en esta técnica para ajustar los valores de algunos hiperparámetros de varias redes 
de aprendizaje profundo previamente entrenadas para maximizar los resultados. SqueezeNet, ShuffleNet, AlexNet, 
ResNet-18 y DarkNet-19 son las redes previamente entrenadas que se emplearon. Probamos las bases de datos 
MED-NODE y DermIS en nuestra investigación. Con respecto a los conjuntos de datos MED-NODE y DermIS, los 
resultados de mayor precisión del método propuesto son del 100% y el 97%, respectivamente. 
 
Keywords: Binary classification, Deep learning, Dermoscopic images, I-GWO, Pre-trained networks, Skin cancer. 
Palabras clave: Clasificación binaria, Aprendizaje profundo, Imágenes dermatoscópicas, I-GWO, Redes 
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1 Introduction 
Computer-aided diagnostic (CAD) technologies are now required to assess and evaluate medical images in the 
modern-day [1]. Furthermore, CAD is critical for medical research, particularly in diagnostic and imaging 
radiography. When utilized correctly, the CAD system can lead to early illness identification, which can lead to 
early treatment choices, potentially saving lives [2]. For example, the capacity to identify a form of cancer at its 
early stages is closely connected to its effective detection and treatment [3]. Because cancer is a conglomeration of 
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several illnesses, early identification and therapy are critical [4]. Cancer is the largest cause of mortality among 
humans, according to several statistics. Skin cancer is a prevalent form; it often arises in the skin that has been 
exposed to sunlight regularly, however, cancer can occur elsewhere in the body. Skin cancer is highly noticeable 
because it begins in the epidermis, the uppermost skin layer. This shows that the CAD system can use photos of 
skin lesions without examining any other related information to make a preliminary diagnosis [5]. 

Melanoma is the most fatal kind of skin cancer discovered in humans, causing pigmented markings on moles 
to appear on the skin [6]. Melanoma is caused by any abnormalities in the melanin-producing cells, which give the 
skin its color. Certain risk factors for melanoma include a history of sunburn, a compromised immune system, pale 
skin, genetic factors, and unnecessary exposure to ultraviolet light [7]. Melanoma begins to develop and spread over 
the outer skin layer before infiltrating the inner layers, where it eventually links with the blood and lymph arteries. 
When skin cancer is recognized in its early stages, it has a higher chance of being treated than when it is discovered 
in its advanced stages. However, early detection of skin cancer is costly [8]. 

Determining whether a lesion is malignant or benign is challenging because skin lesions resemble one another. 
A normal mole is often the same color as the skin, such as brown, black, or tan, with a prominent border that 
distinguishes it from the nearby skin. Moles are typically round or oval and less than 0.25 inch in diameter. A search 
for moles with irregular borders, forms, colors, and moles larger than 0.25 inch in diameter is performed to find 
atypical mole features that might signal skin cancer or melanoma. Numerous strategies, such as genetic algorithms, 
Artificial Neural Networks (ANNs), and Convolutional Neural Networks (CNNs) have been proposed to analyze 
skin pain and categorize it as melanoma or benign [8]. All these approaches have been proven to be more cost-
effective, efficient, and less painful than traditional medical procedures. However, in many computer vision 
applications, it is apparent that both CNNs and deep learning are the preferred techniques [9]. 

Pretrained Deep Learning Networks (PDLNs) are networks that have previously learned to extract powerful 
and useful characteristics from real images and utilize them as a starting point for learning a new task. They have 
been utilized to boost performance and lower computing costs in a variety of disciplines. In image classification 
tasks, PDLNs have been frequently employed [10].  

The Grey Wolf Optimizer (GWO) is a meta-heuristic algorithm inspired by the natural hierarchy of grey wolves 
and their hunting behavior. It imitates the hunting processes of seeking prey, surrounding prey, and attacking prey. 
It gives competitive optimization performance outcomes. To address difficulties like local optima and population 
variety, several GWO versions have been proposed. Among these versions is I-GWO, a version with a novel search 
method that provides the global optimum. Several articles have presented the I-GWO method to improve 
optimization approaches [11], [12]. 

In this paper, we use five PDLNs: AlexNet, ResNet-18, SqueezeNet, ShuffleNet, and DarkNet-19 to detect and 
classify skin cancer diagnosis. The proposed method depends on using these PDLNs with I-GWO to enhance the 
accuracy of these PDLNs to 100%, using the MED-NODE dataset, by optimizing their parameters using I-GWO. 
The proposed technique will enable early identification and diagnosis of skin cancer. This, in turn, will allow for 
more efficient treatment and a reduction in the disease's death rate. 

The rest of the paper is structured as follows. Section 2 presents related works of skin cancer classification and 
detection. Section 3 shows the used materials and methods. The experimental results are described in section 4. 
Finally, section 5 illustrates the conclusion of the research. 
 

2 Related Works 
This section lists various research that has been published in the field of skin cancer classification and detection. It 
focuses on recent works that have used Deep Learning (DL) for the same purpose. 

Kwasigroch et al. [13] proposed using a CNN with hill climbing for search space to classify skin lesions. This 
method increased network size, lowering computing costs. Adegun et al. [14] described an encoder and decoder 
network with skip connections linking subnetworks. The proposed CNN was used to segment skin lesions and 
categorize them pixel by pixel. CNN, according to Song et al. [15], can segment, recognize, and categorize skin 
lesions. To control the imbalanced datasets, they employed a loss function based on the Jaccard distance and the 
focal loss. Manne et al. [16] proposed a CNN-based skin cancer classification system. They showed a completely 
automated computer technique for skin lesion classification. In this study, three models—ResNet-18, AlexNet, and 
VGG16—were pre-trained to act as feature generators. These recovered attributes are subsequently used to train 
support vector machines. 

Thurnhofer-Hemsi and Domnguez [17] presented a CNN architecture for skin cancer diagnosis. They claimed 
that the DenseNet201 network's results are appropriate for this application. Kousis et al. [18] studied deep learning 
algorithms as well as a mobile app for accurate skin cancer screening. They proposed the XGBoost, an average of 
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the top 8 DL models, and an average of 15 DL models. Nawaz et al. [19] presented DL algorithms for melanoma 
diagnosis. CNN was utilized in this approach to extract visual characteristics. These attributes are then sent into two 
ANN models, the first of which is a CNN and was used to identify the target locations. In addition, the second NN 
is a recurrent CNN (RCNN), which detects the location of the lesion. Finally, the lesion segmentation was carried 
out using the Fuzzy K-means (FKM) method based on the established position. Reis et al. [20] employed CNNs to 
Skin Cancer Diagnosis (SCD) and identify lesion locations. In this model, the input images are pre-processed before 
being segmented using the UNet network. The lesion region is clipped depending on the segmentation results, and 
this segment is utilized as the input of a CNN model dubbed InSiNet to categorize the input image. 

Tabrizchi et al. [21] used an upgraded CNN model based on the VGG-16 architecture of the visual geometry 
group to diagnose SC. In this study, the VGG model's design was changed such that it is more compatible with SCD 
disorders and can be identified with more accuracy than the initial model. Changes to filter dimensions and NN 
activation functions are included in this enhancement. Mazoure et al. [22] proposed DUNEScan, a web service for 
evaluating uncertainty in SCD using deep neural networks. Several CNN models, including ResNet50T, 
EfficientNet, Inceptionv3, and MobileNetv2, were utilized in this system to predict skin cancer, and diagnostic 
uncertainty was calculated using the following criteria: average, and variance of learning models. Mohakud and 
Dash [23] used a mix of CNN and GWO algorithms for SCD. In this procedure, the input images were initially pre-
processed to eliminate duplicate information from the images, and the CNN training duration was also increased. 
The GWO technique was then used to tweak the convolutional neural network's hyperparameters. These 
hyperparameters provide the specifications of the convolution filters in the CNN model's layers. The best-discovered 
configuration was utilized for SCD in fresh samples. 

Shorfuzzaman [24] used a DL ensemble model to treat SCD. The transfer learning approach was utilized in this 
model, which contains numerous partial CNN classifications operating concurrently in the form of an ensemble 
system. Finally, the outcomes of these models were combined, and the final output was determined using an 
integration model. Magdy et al. [25] proposed two approaches for identifying and categorizing benign and malignant 
tumors in dermoscopic images. The first technique employs K-Nearest Neighbor (KNN) as a classifier, with PDLNs 
acting as feature extractors. The second technique optimizes its hyperparameters by combining AlexNet and GWO. 
The authors also used artificial neural networks, support vector machines, and convolutional neural networks to 
investigate two techniques to categorize skin cancer images: Machine Learning (ML) and DL. The experiments 
were carried out on 4000 images from the ISIC archive collection, and the proposed methods outperformed other 
evaluated approaches, with some models obtaining an accuracy of more than 99%. 
 

3 Materials and Methods 
This research proposed a method for skin cancer classification, evaluated various pre-trained models, and compared 
their results to the proposed one. This section displays the datasets utilized, the system model, and the proposed 
approach. 

3.1 Datasets 
In this work, we used two datasets: MED-NODE and DermIS datasets. MED-NODE dataset [26] (accessible at 
[27]) comprises images of skin lesions from the digital image archive of the Department of Dermatology of the 
University Medical Center Groningen (UMCG). It contains 170 colored JPEG images, divided into 70 melanoma 
and 100 nevus images. We scaled them to a specific dimension (227×227 pixels) due to their varying dimensions. 
They were then filtered using a median filter. This dataset was randomly divided into 90% for training and 10% for 
testing, resulting in 153 and 17 images, respectively. Figure 1 depicts samples from this dataset after scaling and 
filtering. 
 

  
(a) (b) 

Figure 1. Samples of MED-NODE dataset after scaling and filtering. (a) nevus; and (b) melanoma. 



 
 
Inteligencia Artificial 74 (2024)   105 
 
 

 

The DermIS dataset [28] (accessible at [29]) is a Dermatology Information System for dermoscopic images. 
This dataset was created in collaboration with the University of Erlangen's Department of Dermatology and the 
University of Heidelberg's Department of Clinical Social Medicine. It comprises 1000 colorful JPEG images with 
size of 600×450, 500 of which are benign and 500 of which are malignant. This dataset was randomly split into 
90% training and 10% testing, yielding 900 and 100 images, respectively. Samples of this dataset are shown in 
Figure 2. 

  
(a) (b) 

 
Figure 2. Samples of DermIS dataset. (a) benign; and (b) malignant. 

 

3.2 Preprocessing 
The data were pre-processed in the following manner. First, because images have varying dimensions, it is 

necessary to scale all images to a given size. All images have been scaled to 250×250 pixels. Second, images were 
filtered using the median filter. Third, the skin hair that occurred in the images was deleted using various 
morphological procedures so that it would not affect the classification results because it may be regarded as a part 
of the lesion, as shown in Figure 3. Figure 4 illustrates that images were trimmed to a proper dimension (150×150), 
as many photographs have black borders due to microscope use. Fifth, as shown in Figure 5 (b), we segmented the 
lesion in every image and removed the remaining images with black. Sixth, the black patches around the lesion were 
used to determine the region of interest, as shown in Figure 5 (c); nevertheless, this step altered the image sizes. 
Each image must be resized to the initial size (250×250). Figure 6 depicts all previously performed preprocessing 
procedures. In practice, the segmentation phase impacted classification accuracy and system performance, thus we 
avoided it to achieve better results. 

 

  

(a) (b) 

Figure 3. Sample of skin hair removal step. (a) before; and (b) after. 
 

 
 

  

(a) (b) 

Figure 4. Sample of Image trimming stage. (a) before; and (b) after. 
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(a) (b) (c) 

Figure 5. Segmentation and crop of the lesion area. (a) Input image; (b) Segmented image; and (c) Segmented 
image with surround cropping. 

 
 

 

 
Figure 6. Steps of the dataset preprocessing. 

3.3 System Model 
In this paper, we tested five pre-trained networks as classifiers to classify images from two datasets. We also 
proposed a method that combines these pre-trained models with I-GWO and compared the results of PDLNs with 
the proposed method, as shown in Figure 7. 
 

 

Figure 7. The system model contains PDLNs and the proposed method. 
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3.3.1 PDLNs 

A pre-trained model is a stored network that has been previously trained on a large dataset, typically on a large-
scale image-classification task. We employed five distinct PDLNs in this paper: AlexNet, ResNet-18, SqueezeNet, 
ShuffleNet, and DarkNet-19, which are mentioned below. 

• AlexNet 

AlexNet is a CNN model that largely affects deep learning applications in computer vision. It easily won the 2012 
ImageNet LSVRC-2012 competition (15.3 percent botch rates versus 26.2 percent blunder rates in the runner-up, 
which is VGG-16). The organization's configuration was like Yann LeCun et alLeNet, 's but deeper, with more 
channels per layer and layered convolutional layers. Convolutions, maximum pooling, dropout, information growth, 
ReLU initiations, and stochastic gradient descent with force were all important. It adds ReLU initiations after each 
convolutional and completely related layer. Furthermore, instead of regularization, dropout is utilized to deal with 
overfitting [30]. 

• ResNet-18 

The ILSRVC-2015 competition was won by the ResNet-50 model, which had a 3.57% error rate with an input image 
size of 224 × 224 pixels. Shaoqing Ren, Kaiming He, Jian Sun, and Xiangyu Zhang developed the well-known DL 
model ResNet. ResNet-18 contains 18 layers, whereas ResNet-50 has 50 layers, each having two or three 
convolutional layers. ResNet-101 is a 101-layer DL model [31]. 

• SqueezeNet 

With several 2D convolutions, ReLU, max-pooling, and concatenation layers, SqueezeNet has 68 layers in total and 
1.2 million learnable parameters. A dropout layer is also included to avoid overfitting. The pre-trained SqueezeNet 
network is retrained with over a million photos from the ImageNet collection of diverse objects. It features a wide 
feature set and a significantly simplified architecture that allows it to achieve higher accuracies with less computing 
cost and training time. SqueezeNet has demonstrated good performance with transfer learning in several 
investigations [32]. 

• ShuffleNet 

Megvii Inc (also known as Face++) announced ShuffleNet, which they say is an incredibly computation-efficient 
CNN architecture optimized for mobile devices with 10-150 MFLOPs of computational capacity. To minimize 
computing costs while retaining accuracy, the ShuffleNet employs pointwise group convolution and channel 
shuffling. On ImageNet classification, it produces lower top-1 error than the MobileNet system and delivers a 13x 
real speedup over AlexNet while maintaining comparable accuracy [33]. 

• DarkNet-19 

DarkNet-19 is a model of a convolutional neural network. To create predictions, this pre-trained model employs 
1×1 filters to condense the feature representation between 3×3 convolutions and global average pooling. The 
DarkNet-19 is composed of 19 convolutional layers and five max-pooling layers that were trained using over one 
million photos from the ImageNet database. DarkNet-19 can classify images into over 1000 distinct things, 
including keyboards, mice, animals, and even humans [34]. 

 
Pretrained deep networks are tested as classifiers using Transfer Learning (TL) in this work. TL is a machine 
learning approach that repurposes a model developed for one task for another. It is commonly employed when there 
is a lack of training data. Data augmentation, on the other hand, can aid in overcoming the data difficulty. Because 
melanoma and benign lesions are so similar, it takes a long time to distinguish and classify them, we need transfer 
learning. Transfer learning is also more efficient in categorizing related lesions, making it the recommended 
strategy. Transfer learning networks are trained on massive datasets, and their model weights are frozen before the 
last few layers are changed for a different dataset [35]. 

A pre-trained network can be used to begin learning a new task. TL is much faster and simpler than training a 
network from scratch with randomly assigned weights. We started with data loading, preprocessing, and splitting. 
We then ran a pre-trained network. Convolutional layers of the network retrieved image features, which are the final 
learnable and final classification layers utilized to categorize the input picture. The classification layer sets the 
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output classes of the network. We removed the classification layer and replaced it with a new one that did not include 
class labels. To freeze the weights of the network's previous layers, we set their learning rates to zero. During 
training, the network did not alter the parameters of the frozen layers. Because the gradients of the frozen layers do 
not need to be computed, freezing the weights of multiple early layers can greatly expedite network training. 

Each network requires different sizes of input images, so we employed an augmented image data store to 
automatically resize the training images. On the training images, we specified additional augmentation procedures: 
random reflection, translation, scaling, and rotation. The addition of data stops the network from overfitting and 
memorizing the exact features of the training pictures. After that, the training choices were given, as well as the 
number of epochs to be trained in. When applying transfer learning, it is not necessary to train for as many epochs. 
The fine-tuned network was utilized to classify the testing images and determine classification accuracy. Figure 8 
depicts the procedures involved in using PDLNs as TL classifiers. 

 
 

 

Figure 8. Process Steps of classification of pre-trained models with TL. 

3.3.2 Proposed Method 

In this paper, we proposed a method to detect and classify skin cancer disease, which is PDLNs with I-GWO. The 
GWO algorithm [11] is built around the concept of hunting. Wolves are members of a hunting pack that contains 
numerous grey wolves. Wolves in a pack are classed according to their leadership skills. There are four varieties of 
wolves in a pack: alpha (α), beta (β), delta (δ), and omega (ω). The group's choice is made by the leader of the 
hunting procedure. The surviving wolves' dominance progressively declines in the following order: β, δ, and ω. 
Such wolves hunt and report back to their master’s about their better situations. In this phase, which is the course 
of the pursuit, the first grey wolves search for and contain prey α, β, and δ have a better understanding of potential 
prey locations for mathematical models of hunting behavior [36]. 

The algorithm offers both huge benefits and possible drawbacks. One of the benefits of the GWO method is its 
ease of implementation. The algorithm's fundamentals are quite straightforward, making it simple to learn and 
execute. Second, the GWO method can do extensive global searches. The system, which is based on the prey-
seeking behavior of grey wolf packs, can successfully explore probable optimum solutions over the whole search 
space. 

This enables it to identify globally optimum solutions to unconstrained continuous optimization problems. 
Furthermore, the GWO method has a high rate of convergence. By imitating wolves' collaborative and competitive 
behavior to update the solution vector, the method can swiftly converge to a better solution, thereby speeding up 
the optimization process. Finally, the GWO algorithm has some parameter adaptability. It may automatically alter 
the parameter values during the search process to increase the resilience and performance of the algorithm. This 
flexibility may adapt to the peculiarities of various challenges, reducing the difficulty of parameter modification. 
However, the GWO algorithm has certain possible downsides. First, it is more sensitive to the problem's restrictions. 
When dealing with limited optimization issues, additional processing is necessary to verify that the outcomes are 
feasible. Second, while the GWO algorithm can do global searches, it may nevertheless fall back on local optimum 
solutions in some complicated issues. Finally, parameter tweaking in the algorithm is a challenge; various issues 
may necessitate different parameter choices, and experimentation and debugging are required to get better 
performance [37]. 
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In GWO, α, β, and δ direct ω wolves to parts of the search space where they are likely to locate the best answer. 
This behavior may be trapped in a locally optimum solution. Another negative consequence is a decline in 
population variety, which causes GWO to fall into the local optimum. To address these limitations, I-GWO was 
suggested as a GWO upgrade. The I-GWO enhances wolf-hunting search strategies by employing a novel search 
approach known as Dimension Learning-based Hunting (DLH). The DLH search approach is inspired by wolves' 
hunting behavior in the wild, and it broadens the scope of global search through multi-neighbor learning. The I-
GWO then has both candidate wolves created by the DLH and the GWO seeks techniques in each iteration to 
relocate the wolf Xi from the present location to a better place. Furthermore, the I-GWO employs an extra choosing 
and updating phase in each iteration to pick the winning candidate wolf and update the current position for the 
following iteration. The I-GWO comprises three phases: initializing, moving, and selecting and updating, as shown 
below [12]. 

Initializing phase: N wolves are randomly dispersed in the search space within a certain range [li, uj] by (1). 
 

𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑗𝑗 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗[0,1] × �𝑢𝑢𝑗𝑗 − 𝑙𝑙𝑗𝑗�, 𝑖𝑖 ∈ [1,𝑁𝑁], 𝑗𝑗 ∈ [1,𝐷𝐷] (1) 
 
The i-th wolf's location in the t-th iteration is represented as a vector of real numbers Xi (t) = {xi1, xi2, ..., xiD}, 

where D is the problem's dimension number. The whole wolf population is kept in a Pop matrix with N rows and D 
columns. The fitness function, f (Xi (t)), determines the fitness value of Xi (t). 

Movement phase: individual hunting, in addition to group hunting, is an intriguing social activity of grey 
wolves, and it is our drive to enhance GWO. DLH is an extra movement strategy approach that is incorporated by 
I-GWO. Each wolf in DLH is recognized by its neighbors as another contender for the new post of Xi (t). 

Selecting and updating phase: During this phase, the best candidate is chosen by comparing the fitness values 
of two candidates, Xi-GWO (t + 1) and Xi-DLH (t + 1), using (2). 

 

𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) = �𝑋𝑋𝑖𝑖−𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡 + 1), 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖−𝐺𝐺𝐺𝐺𝐺𝐺) < 𝑓𝑓(𝑋𝑋𝑖𝑖−𝐷𝐷𝐷𝐷𝐷𝐷)
𝑋𝑋𝑖𝑖−𝐷𝐷𝐷𝐷𝐷𝐷(𝑡𝑡 + 1), 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (2) 

 
Xi-GWO is the first candidate for the new position of wolf Xi (t), and it is calculated by (3). 
 

𝑋𝑋𝑖𝑖−𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡 + 1) =
𝑋𝑋𝑖𝑖1(𝑡𝑡) + 𝑋𝑋𝑖𝑖2(𝑡𝑡) + 𝑋𝑋𝑖𝑖3(𝑡𝑡)

3
 (3) 

 
In addition to Xi-GWO (t + 1), Xi-DLH (t + 1) is another candidate for the new position of wolf Xi (t) that is generated 

by the DLH search strategy which is computed by (4). 
 

𝑋𝑋𝑖𝑖−𝐷𝐷𝐷𝐷𝐷𝐷,𝑑𝑑(𝑡𝑡 + 1) = 𝑋𝑋𝑖𝑖,𝑑𝑑(𝑡𝑡) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × (𝑋𝑋𝑛𝑛,𝑑𝑑(𝑡𝑡) − 𝑋𝑋𝑟𝑟,𝑑𝑑(𝑡𝑡)) (4) 
 

, where the d-th dimension of Xi-DLH,d (t + 1) is computed by taking the d-th dimension of a random neighbor Xn,d (t) 
chosen from Ni (t), the neighbors of Xi (t) shown at (5), and a random wolf Xr,d (t) chosen from Pop. 
 

𝑁𝑁𝑖𝑖(𝑡𝑡) = {𝑋𝑋𝑗𝑗(𝑡𝑡)|𝐷𝐷𝑖𝑖 �𝑋𝑋𝑖𝑖(𝑡𝑡),𝑋𝑋𝑗𝑗(𝑡𝑡)� ≤ 𝑅𝑅𝑖𝑖(𝑡𝑡),𝑋𝑋𝑗𝑗(𝑡𝑡) ∈ 𝑃𝑃𝑃𝑃𝑃𝑃} (5) 
 

, where Di represents the Euclidean distance between Xi (t) and Xj (t). Ri (t) is a radius determined by (6) utilizing 
the Euclidean distance between Xi (t) 's present position and the candidate point Xi-GWO (t + 1). 
 

𝑅𝑅𝑖𝑖(𝑡𝑡) = ‖𝑋𝑋𝑖𝑖(𝑡𝑡) − 𝑋𝑋𝑖𝑖−𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡 + 1)‖ (6) 
 
After that, to update the new position of Xi (t + 1), if the fitness value of the selected candidate is smaller than 

Xi (t), the picked candidate updates Xi (t). Otherwise, Xi (t) in Pop remains unaffected. After completing this 
operation for all persons, the iteration counter is incremented by one, and the search can be repeated until the 
predetermined number of iterations is achieved [12]. 

In this paper, I-GWO is chosen to be used as an optimizer with PDLNs. The same stages as for pre-trained 
models as classifiers were followed, which is shown in Figure 8, except that variables at the mini-batch size and 
initial learning rate hyperparameters were added to the training choices to be optimized by I-GWO, as illustrated in 
Figure 5. We also selected the maximum number of I-GWO iterations and the number of search agents. The lower 
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and upper limits for the required parameters are then determined. In detail, we initialized alpha, beta, and delta 
positions, initialized search agent positions, returned search agents that go beyond the search space boundaries, 
calculated the objective function for each search agent, updated alpha, beta, and delta positions, and updated the 
position of search agents including omegas. Figure 9 depicts the procedure steps of the proposed method. 

4 Experimental Results 
This section compares PDLN results and the proposed method, PDLNs with I-GWO, results. These experiments 
are tested on MED-NODE and DermIS datasets. System implementation and used performance metrics are also 
shown in this section. 
 

 

 

Figure 9. Process Steps of the proposed method. 

4.1 System Implementation 
The frameworks that have been implemented have been tested and reviewed on the following software and hardware 
configurations: 

 
• Operating system: Windows 10 Pro.  
• Compiler: MATLAB R2020b.  
• Processor: Intel (R) Core (TM) i7-9750H CPU @ 2.60GHz   2.59 GHz. 
• Installed RAM: 16.0 GB (15.9 GB usable). 
• System type: 64-bit operating system, x64-based processor. 

4.2 Performance Metrics 
To estimate the performance of the PDLNs, we employed five measurements (see (7), (8), (9), (10), and (11) below). 

Precision =
TP

TP + FP
 (7) 

F1 score =
2 × TP

2 × TP + FP + FN
 (8) 

Sensitivity =
TP

TP + FN
 (9) 

Specificity =
TN

TN + FP
 (10) 

Accuracy =
TP + TN

TP + TN + FP + FN
 (11) 

 
• TP (True Positive): The number of malignant or melanoma samples correctly classified. 
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• TN (True Negative): The number of benign or nevus samples correctly classified. 
• FP (False Positive): The number of benign or nevus samples that were mistakenly diagnosed as malignant 

or melanoma. 
• FN (False Negative): The number of malignant or melanoma samples that were mistakenly diagnosed as 

benign or nevus.  

4.3 Results and Discussion 
This section describes the findings and parameters utilized in the tested networks as well as the proposed technique. 

AlexNet, ResNet-18, SqueezeNet, ShuffleNet, and DarkNet-19 were the five PDLNs we examined. These 
models were evaluated as TL classifiers. Because each network requires a distinct size of the input image, we used 
an augmented image data store to resize the training images automatically. We specified other augmentation 
techniques on the training images, which are randomly reflection along the horizontal axis, randomly translation up 
to 30 pixels, horizontally scaling and vertically up to 10%, and rotation up to 30 pixels. The training hyperparameters 
of PDLNs are as follows: 50 maximum epochs, 32 mini-batch sizes, and 1×10 - 4 initial learning rate. 

When employing PDLNs with I-GWO (proposed technique), the number of search agents in I-GWO was 
limited to 5, with a maximum of 20 iterations. I-GWO was used to adjust two PDLNs’ hyperparameters: mini-batch 
size and initial learning rate. The lower and upper limitations for mini-batch size were set to 2 and 64, respectively. 
The initial learning rate has lower and upper limitations of 1×10 - 5 and 1×10 - 3, respectively. 

4.3.1 In MED-NODE Dataset 

In the first Dataset, MED-NODE, we split it into 90% for training (153 images) and 10% for testing (17 images). 
The best hyperparameters of I-GWO that give the best accuracy are shown in Table 1. These hyperparameters 
provide the best accuracy for PDLNs with I-GWO (100%) compared to them as TL classifiers, as shown in Table 
2. In Table 2, When using PDLNs as TL classifiers, AlexNet and ResNet-18 have the highest accuracy (94.1176%) 
compared to other networks, but all networks achieve 100% in the proposed method. The confusion matrix of 
AlexNet and the training progress of ResNet-18 are shown in Figure 10 and Figure 11, respectively. 
 

Table 1. The best hyperparameters that I-GWO optimized for PDLNs (in MED-NODE dataset). 

PDLNs Mini Batch Size Initial Learning Rate 
AlexNet 28.57590344 2.38E-04 

ResNet-18 37.94404237 6.08E-04 
SqueezeNet 10.19685983 3.77E-04 
ShuffleNet 17.25031776 5.47E-04 
DarkNet-19 5.159421059 1.97E-04 

 
 
 

Table 2. Performance of PDLNs as TL classifiers vs. performance of the proposed method (using MED-
NODE dataset). 
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AlexNet 100 94.7368 90 100 94.1176 100 100 100 100 100 
ResNet-18 100 94.7368 90 100 94.1176 100 100 100 100 100 

SqueezeNet 90 90 90 85.7143 88.2353 100 100 100 100 100 
ShuffleNet 90 90 90 85.7143 88.2353 100 100 100 100 100 
DarkNet-19 100 88.8889 80 100 88.2353 100 100 100 100 100 
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Figure 10. Confusion matrix of AlexNet in proposed method (using MED-NODE dataset). 

 
 
 

 

 

 Figure 11. Training Progress of ResNet-18 in proposed method (using MED-NODE dataset). 

 

4.3.2 In DermIS Dataset 

In the second Dataset, DermIS, we split into 90% for training (900 images) and 10% for testing (100 images).  The 
best hyperparameters of I-GWO that give the best accuracy are shown in Table 3. These hyperparameters provide 
the best accuracy for PDLNs with I-GWO (97%) compared to them as TL classifiers, as shown in Table 4. In Table 
4, When using PDLNs as TL classifiers, AlexNet has the highest accuracy (94%) compared to other networks, but 
it achieves 96% and SqueezeNet achieves 97% in the proposed method. The confusion matrix of ShuffleNet and 
the training progress of DarkNet-19 are shown in Figure 12 and Figure 13, respectively.  
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Table 3. The best hyperparameters that I-GWO optimized for PDLNs (in the DermIS dataset). 

PDLNs Mini Batch Size Initial Learning Rate 
AlexNet 32.94150309 4.66E-04 

ResNet-18 55.24170352 9.98E-04 
SqueezeNet 23.90725418 8.76E-04 
ShuffleNet 29.05948951 9.36E-04 
DarkNet-19 37.90979144 9.66E-04 

 
 
 
 
 
 

 
Table 4. Performance of PDLNs as TL classifiers vs. performance of the proposed method (using DermIS 

dataset). 
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PDLNs as TL classifiers The proposed method 
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AlexNet 97.83 93.75 90 98 94 100 95.0495 96 100 96 
ResNet-18 93.62 90.72 88 94 91 97.0588 91.6667 95 98 94 

SqueezeNet 97.78 92.63 88 98 93 100 93.2039 96 100 97 
ShuffleNet 95.74 92.78 90 96 93 97.7778 93.75 90 98 94 
DarkNet-19 97.73 91.49 86 98 92 97.8723 94.8454 92 98 95 

 
 
 
 
 
 
 

 
 

Figure 12. Confusion matrix of ShuffleNet in the proposed method (using DermIS dataset). 
 
 



 
 
Inteligencia Artificial 74 (2024)   114 
 
 

 

 
 

Figure 13. Training Progress of DarkNet-19 in the proposed method (using DermIS dataset). 
 

5 Conclusion 
One of the worst malignancies in the world is skin cancer. Early detection and diagnosis of skin lesions is critical 
for determining the appropriate therapy for the patient and, in the event of malignant lesions, increasing the patient's 
chance of life. This condition is diagnosed manually by competent dermatologists, but it takes time and is 
challenging. This technique may be made quicker, faster, and more precise by utilizing CAD technologies. A new 
approach for detecting and classifying skin cancer was proposed in this paper. This approach was proposed to detect 
and categorize benign and malignant tumors in dermoscopic images. The proposed method employs a combination 
of an optimization methodology (I-GWO) and PDLNs to optimize PDLNs’ hyperparameters. It was tested on 
samples from two databases, MED-NODE and DermIS. According to the results, the proposed technique can detect 
skin cancer in the MED-NODE and DermIS datasets with 100% and 97% accuracy, respectively. 
The limitation in our work is the long processing time of I-GWO and some PDLNs which prevents us from using 
large datasets. Future work will involve training and testing the models on much bigger datasets with multiple 
classes. Metadata, such as age, location of lesion, thickness of lesion, and progression of lesion, may be included 
with datasets to enhance classifier metrics. Furthermore, the use of real-time skin cancer detection models with 
mobile applications can considerably increase accessibility and convenience for both patients and healthcare 
providers. 
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