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Abstract. The recognition of hand gestures is of growing importance in developing human-machine interfaces 
that rely on hand motions for communication. However, recognizing hand gesture motions poses challenges due to 
overlapping gestures from different categories that share similar hand poses. Temporal information has proven to 
be more effective in distinguishing sequences of hand gestures. To address these challenges, this research presents 
an innovative adaptive decision-making system that aim to enhance gesture recognition within the identical category 
have been introduced. The system capitalizes on the potential for variations in recognition outcomes derived from 
a diverse model of time-sharing neural networks, each employing different neural networks and trained on distinct 
input features. By incorporating such diverse input features, the system significantly boosts the robustness of 
recognition decisions, enabling it to effectively capture even the most subtle disparities within internal video 
representations. To achieve our research objective, we extensively investigate deep convolutional neural networks 
specifically trained on videos for hand gesture recognition. We also incorporate enhanced features from deep CNN 
using standard neural networks, namely Self Organizing Network and Radial Basis Function Network. By 
combining these features in various configurations, we develop novel frame-wise features based on the enhanced 
CNN features. These frame-wise features enable the training of diverse sets of recurrent neural network models, 
resulting in novel ensembles of composite models derived from various recurrent neural networks with diverse 
configurations. Some models are trained using multiple streams, while others utilize a single stream. To ensure the 
effective integration of these models, we implement a novel adaptive decision system mechanism that improves 
performance for weak prediction models and enhances overall recognition capability by taking a collective 
prediction decision. Experimental results demonstrate the significance of each proposed recurrent neural network 
model and the effectiveness of the new frame-wise features in enabling accurate decisions. This research achieves 
state-of-the-art performance in hand gesture recognition, highlighting the potential of combining different neural 
network architectures and feature representations to achieve superior outcomes. 

Keywords: Recurrent Neural Networks, Self Organizing Network, Radial Basis Function Network, Video 
Gesture Recognition, Adaptive Decision System 
 

1 Introduction 
   System integration is a vital aspect of machine learning that combines multiple models or algorithms to 

enhance prediction accuracy. Various approaches have been developed for this purpose. One such approach is the 
Generalized Weighted Ensemble with Internally Tuned Hyperparameters (GEM-ITH), which is a weighted 
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averaging stacking method introduced in [1]. GEM-ITH optimizes ensemble weight optimization by tuning the 
hyperparameters of each base learner, resulting in improved performance and accurate capture of the underlying 
data distribution. The optimization process is accelerated through Bayesian search, and a heuristic generates diverse 
and high-performing base learners. 
Ensemble methods and stacking classifiers are also widely used in medical image analysis, particularly in the 
diagnosis of pediatric pneumonia using chest X-rays [2]. In this application, a proposed approach incorporates 
contrast-limited Adaptive Histogram Equalization for image enhancement. Deep learning-based features extracted 
from models such as MobileNet, DenseNet121, DenseNet169, and DenseNet201 are concatenated and fed into a 
stacked ensemble classifier, leading to accurate classification. 

Another effective integration technique is stacking, where predictions from multiple models serve as input 
features for a meta-model that makes the final prediction. This technique has shown promise in precise Breast 
Cancer (BC) diagnosis [3]. StackBC, a deep learning-based stacking method, combines Convolutional Neural 
Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) models to classify Invasive 
Ductal Carcinoma (IDC), achieving improved predictive outputs through the stacking technique. Ensemble learning 
and stacking frameworks have also been employed to enhance wind power forecasting accuracy and stability [4]. 
An ensemble model is constructed by pre-processing wind power data using various decomposition techniques and 
selecting optimal methods. The first-layer forecasting model consists of base learners with low correlation and 
strong predictive ability, while a higher-order neural network (HNN) serves as the second-layer prediction model. 

Hierarchical approaches provide an alternative method for system integration by assigning different models to 
distinct prediction levels. This hierarchical structure enables specialized tasks such as low-level feature extraction, 
object classification, and decision-making based on object classifications. Researchers have proposed various 
hierarchical approaches to address specific challenges. For example, the Hierarchical Scale-Aware Vision-
Language Transformer (HSVLT) introduced in [5] recognizes multiple objects within an image. HSVLT 
incorporates a hierarchical multi-scale architecture and a Cross-Scale Aggregation module, enabling the recognition 
of objects with varying sizes and appearances. Similarly, an end-to-end trainable hierarchical deep learning model 
is proposed in [6] for autonomously localizing putty terminal points in the wall putty scraping process using 
construction robots. This model combines visual attention and the inception module to enhance feature extraction 
capabilities through multi-scale attention feature fusion. 

Fusion techniques play a crucial role in system integration by combining information from different sources or 
modalities to improve predictions. In multi-modal computer vision tasks, fusion techniques facilitate the fusion of 
features from various sensors or modalities, such as images, depth maps, or audio. Fusion can be achieved through 
techniques like early fusion, which combines features at the input level, or late fusion, which combines predictions 
at the output level. For instance, the dual-decoding hierarchical fusion network (DHFNet) described in [7] 
effectively utilizes RGB and thermal data in multi-modal computer vision tasks. DHFNet incorporates a two-layer 
decoder with boundary refinement and boundary-guided foreground/background enhancement modules to preserve 
more information during decoding. It also includes an adaptive attention-filtering fusion module to extract 
complementary information from RGB and thermal modalities, a graph convolutional network, and an atrous spatial 
pyramid pooling module to capture multiscale features and enhance semantic information. 

In the context of time series forecasting [8], a reinforcement learning-based model combination (RLMC) 
framework is proposed to address the challenge of accurate modeling and forecasting of time series data. RLMC 
treats model selection as a sequential decision-making problem and learns a deterministic policy through 
reinforcement learning to output dynamic model weights suitable for non-stationary time series data. Deep learning 
is incorporated to extract hidden features from raw time series data, enabling quick adaptation to changing data 
distributions. 

Additionally, self-supervised representation learning algorithms like Predictions of Bootstrapped Latents (PBL) 
[9] capture structured information about environment dynamics by utilizing multistep predictive representations of 
future observations. PBL trains the representation by predicting latent embeddings of future observations, 
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facilitating the learning of crucial aspects of the environment dynamics. PBL offers flexibility by defining prediction 
tasks in the latent space and supporting the use of multimodal observations. Furthermore, a dynamic ensemble wind 
speed prediction model based on deep reinforcement learning is proposed in [10]. This model considers the time-
varying characteristics of wind speed series and incorporates ensemble learning, multi-objective optimization, and 
deep reinforcement learning to ensure effectiveness. 

The choice of integration method depends on the specific problem and the characteristics of the models involved. 
Evaluating and comparing different integration techniques is important to determine the most effective approach 
for a given computer vision task. 

2 Related Works 
Recognizing hand gestures accurately is often challenging due to the similarities in hand poses observed within 
video gestures, leading to overlapping. Moreover, variations in movement speed and the importance of sequential 
events further compound the difficulties in video recognition. Addressing these challenges necessitates the 
recognition of variations inherent in hand gestures. To address these challenges, researchers have explored various 
approaches in hand gesture recognition, leveraging the integration between machine learning techniques and 
considering the temporal aspects of gesture sequences. 
In the work by [11], the focus is on dynamic gesture recognition in human-machine interaction. The proposed model 
consists of two sub-networks: a transformer and an ordered-neuron long-short-term memory (ON-LSTM) based 
recurrent neural network (RNN). These sub-networks are trained using skeleton joint information to recognize 
gestures. The distinct architectures of the sub-networks enable knowledge sharing between them. Through 
knowledge distillation, the features and predictions from each sub-network are fused into a new fusion classifier. 
Additionally, a cyclical learning rate is employed to generate an ensemble of models, enhancing generalizability, 
and improving prediction performance. 
The paper by [12] proposes an ensemble of CNN-based approaches for hand gesture recognition. The process 
involves gesture detection using background separation, contour extraction, and hand region segmentation. The 
images are then resized and fed into three individual CNN models, trained in parallel. The output scores of the CNN 
models are averaged to create an optimal ensemble model for the final prediction. In [13], a deep learning model is 
proposed for accurate surface electromyography (EMG) decoding of hand gestures in human-computer interaction. 
The model incorporates attention mechanisms and transfer learning. It includes a feature extractor, label classifier, 
and gesture estimator. Attention modules enhance feature extraction by emphasizing important information and 
transfer learning selectively transfers parameters from a pre-trained model, improving performance. The proposed 
model outperforms baseline models in terms of estimation accuracy on the Myo and NinaPro datasets, even with 
limited retraining data. 
Another study [14] focuses on improving the control of wearable mechatronic devices used in assisted therapy by 
developing a user-independent gesture classification method. Through sensor fusion, the method combines 
electromyography (EMG) data and inertial measurement unit (IMU) data. The study involved healthy participants 
wearing the Myo  Armband and performing seven gestures in different arm positions. Three classification methods 
were employed to achieve accurate gesture recognition. 
Skeleton-based action recognition is explored in [15], simultaneously addressing temporal and spatial aspects. 
Different representations of skeletal data are proposed and evaluated, incorporating attention mechanisms to 
enhance training efficiency. The proposed representations demonstrate comparable or improved accuracy compared 
to previous work on UT-Kinect and Kinect Activity Recognition Dataset (KARD) datasets, highlighting their 
practicality and effectiveness for action recognition. 

The work by [16] introduces SDViT, a stacked distilled vision transformer model for hand gesture recognition 
(HGR). SDViT addresses similar hand gestures, real-time performance, and model generalization challenges. It 
utilizes a pre-trained vision transformer (ViT) with self-attention to capture intricate connections among image 
patches. Knowledge distillation compresses the ViT model and enhances generalization. Multiple distilled ViTs are 
stacked to improve predictive performance and reduce overfitting. 
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MoVNect, presented in [17], is a lightweight deep neural network designed for 3D human pose estimation using a 
single RGB camera. The model's performance is improved by applying knowledge distillation through teacher-
student learning. Real-time post-processing ensures temporally stable 3D skeletal information, enabling direct 
application in various scenarios. The authors demonstrate the network's capabilities by implementing a real-time 
3D avatar application on mobile devices, showcasing high accuracy and fast inference time. 
Moreover, the study [18] demonstrates the effectiveness of a late fusion approach in sign language recognition. Two 
deep neural networks optimized for vision and Leap Motion data are fused, resulting in improved performance 
compared to individual approaches. The multimodal approach outperforms single-sensor methods when applied to 
unseen data. Transfer learning with British Sign Language weights further enhances the models' performance in 
classifying American Sign Language, with the transfer learning multimodality approach achieving the highest 
accuracy. 
These related works collectively contribute to the advancements in hand gesture and motion interaction in machine 
learning, providing insights and techniques for improved recognition and application in various domains. 
The research presented in this study builds upon the work by [19] and introduces several significant contributions 
that advance the field of hand gesture recognition. It is important to discuss the importance of these contributions 
to the current state-of-the-art methods and highlight the significance of detecting and identifying gestures. 
Firstly, this study introduces novel training pipelines for different modalities of neural networks, aiming to improve 
predictability. By developing specific training approaches of different modalities, such as single-stream and multi-
stream of time-shared recurrent neural networks, to address the challenges of accurately recognizing hand gestures 
in diverse input types. This contribution is crucial in improving the performance of hand gesture recognition 
systems, as it optimizes the training process for each modality and enhances the overall predictability of the 
networks. 
Secondly, the research focuses on the extraction of diverse new features with varying performance levels. By 
identifying and incorporating a wide range of features that capture different aspects of hand gestures, the study 
enhances the discriminative power of the models. These diverse features play a crucial role in improving the 
recognition performance of both proposed models. This contribution enables a more comprehensive and robust 
representation of hand gestures, leading to more accurate and reliable recognition. Furthermore, the study proposes 
an adaptive decision system that effectively enhances the accuracy of predictions while reducing execution time. 
By intelligently combining the outputs of various training modality pipelines, the research optimizes hand gesture 
recognition performance. This contribution is particularly valuable in real-time applications, where quick and 
accurate gesture recognition is essential for efficient human-computer interaction. 
In light of the current state-of-the-art methods, the contributions of this research significantly advance the field of 
hand gesture recognition. The novel training pipelines, diverse feature extraction, and adaptive decision systems 
collectively contribute to improving the recognition and predictability of neural networks. By addressing the 
challenges related to different modalities, enhancing the feature representation, and optimizing decision-making, 
the proposed methods push the boundaries of gesture recognition technology. 
It is crucial to recognize the substantial implications of gesture detection and identification across various domains. 
Hand gestures serve as a natural and intuitive form of communication, particularly in sign language learning and 
human-computer interaction. The accurate and efficient recognition of gestures plays a pivotal role in facilitating 
effective communication among individuals with different communication abilities, enhancing accessibility in 
technology interfaces, and unlocking new opportunities for interactive applications. As a result, the contributions of 
this research hold significant value in advancing gesture recognition techniques, benefiting fields such as education, 
accessibility, and human-computer interaction. 
However, it is important to consider that the implementation of diverse neural network architectures and ensembles 
of models may introduce computational complexity. This complexity can potentially impact real-time performance 
and practical feasibility, particularly in resource-constrained environments or on low-power devices. Nevertheless, 



 
 
Inteligencia Artificial 74(2024)  185 
 
 

 

the effectiveness of the proposed pipeline on the hand gesture video dataset has been empirically demonstrated, 
specifically in the context of sign language learning. 
The effectiveness of the new pipeline on the hand gesture video dataset has been proven for sign language learning. 
The model structure proposed in this study encompasses four distinct types of neural networks, which are 
extensively categorized and elucidated in Section (3). Section (4) provides a comprehensive overview of the 
research methodology, including a detailed explanation of the proposed models and their precise implementation 
mechanisms. Furthermore, Section (5) is dedicated to presenting the results obtained from the implementation of 
the proposed work.  

3 Neural Networks 
Neural networks are a subset of machine learning that involve learning techniques such as classification and 
regression. They offer a variety of algorithms and designs that can be used for supervised and unsupervised learning, 
among other things. In our proposed work, we have employed several neural network algorithms, and we will 
provide a detailed description related to the working mechanism with videos of each one that has been utilized in 
this study. 

3.1 Convolutional Neural Network CNN 

 
 Deep learning networks, particularly Convolutional Neural Networks (CNNs), have gained significant 

prominence in recent years as a formidable approach to neural network modeling. CNNs consist of multiple layers, 
each serving a specific purpose in the classification process. Convolutional layers utilize filters of various lengths 
to extract essential features from the input while pooling layers reduce the dimensionality of the input pattern. Non-
linear layers are strategically interspersed to create a deep network that can be trained in a feed-forward manner. 
This training optimizes the weights for each layer, enhancing the network's performance. To train CNNs, a gradient 
descent algorithm is employed with a constant learning rate (R) and descent momentum value (Mom), as depicted 
in equation (1). This iterative process allows for the optimization of weights in each layer, enabling effective video 
image classification in the proposed work. 

              
                                                                            WL=WL-1+RL*MomL                                                       (1)   
 
Through extensive research and experimentation, CNNs have demonstrated their potential in various domains. 

Their ability to handle large-sized images during training and mitigate overfitting issues sets them apart from other 
neural networks. This makes CNNs particularly suitable for identifying video images of hand gestures and, thus, 
their feature extraction, as they offer superior performance and robustness. 

 In our study, we employed the video image features of hand gestures extracted via CNN training as essential 
inputs in training other neural networks. The primary objective behind this approach was to enhance recognition 
performance significantly. Subsequently, we will delve into a comprehensive exploration of these networks in the 
subsequent sections. 

3.2 Radial Basis Function Neural Network 

 
   In the domain of neural networks, the Radial Basis Function (RBF) network stands out as a specific type of 

feed-forward neural network. The RBF network extends beyond the input layer, incorporating two additional layers 
- a hidden layer and an output layer. The hidden layer in an RBFN plays a pivotal role in clustering and feature 
extraction by adjusting its parameters, particularly the center points of the radial basis functions, to effectively 
capture the data distribution. Meanwhile, the output layer performs a linear transformation of the hidden layer 
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activations to produce the final output [20]. Within the hidden layer, each neuron calculates its sigma (σ) value using 
expression (2). This value represents the average distance between the training set F, consisting of m video image 
features from a specific category, and the center μ. To achieve optimal clustering, K-means is employed to cluster  
the training image features around the most suitable image feature center μ. Expression (3) reveals the computation 
of Beta (β) for each hidden neuron. Beta determines the extent of influence of the activation function based on the 
calculated sigma value. Expression (4) demonstrates how the activation function Φ is determined for each input 
neuron that quantifies the similarity between an input image feature and the feature vector of cluster centers across 
all categories. The activation function leverages an exponential function to measure the similarity. The output layer 
employs the activation function to compute the final decision for each output node, as depicted in expression (4),(5). 
This computation involves the generalized inverse for all activated image frames, multiplied by the corresponding 
binary label (L) of the same length as the set of training image frames. Binary labels are assigned as follows: 1 for 
the same category and 0 for others. 
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                                                                                      Φ(F)= 𝑒𝑒𝛽𝛽||𝐹𝐹𝑖𝑖−𝜇𝜇||2                                                           (4) 
 
                                                                                      θ = (φ(F)𝑇𝑇φ(F). φ(F)𝑇𝑇 ∗ 𝐿𝐿𝑐𝑐                                          (5) 
 
 As obvious, Radial Basis Function Neural Network offers a powerful framework for video similarity analysis. 

By leveraging the architecture's hidden layer computations, clustering, and feature extraction, the network can 
effectively extract and analyze similarity relationships within video categories. Additionally, training the network 
on all video sets enhances the activation function of the hidden layer, enabling a more comprehensive understanding 
of similarity relationships across the entire video dataset. This approach contributes to improved video recognition 
and classification outcomes, facilitating more accurate and efficient analysis of video similarity. 

 
3.3 Self-Organizing Maps Network SOM 
 
    In the realm of neural networks, the Self-Organizing Maps (SOM) network stands out with its unique architecture. 
As described in [21], the SOM network comprises two layers: the input layer and the output layer. The output layer 
consists of a square grid of neurons, each initialized with a weight W. These weights are trained to compete with 
neighboring neurons to identify the matching input video image feature O of hand gesture. The winning neuron is 
determined based on its distance D from the input video image feature. To update the weights, neighboring neurons 
in two directions are taken into account, utilizing the Gaussian function N that dependes on the distance between 
the considered neuron i and the winning neuron j in the output neuron grid of length n*m. The neighborhood function 
is higher for neurons closer to the winner, as expressed in equations (7) and (8). 

Through the process of weight adjustment, the weights W converge to optimal values that are proportional to 
each input video image feature, as depicted in equation (9), where L represents a small learning rate. The SOM 
network operates as an unsupervised learner, as it does not rely on the actual values of desired classes. Competitive 
learning is employed to extract adjacent topological features in the image training set, assigning each input video 
image feature to the closest weight. In the SOM network's output layer, it is evident that features from input video 
images of a single category can correspond to multiple neurons. This characteristic enables the collection of data 
about similar features at multiple locations, thereby aiding in the classification of complex data within video images. 
The network's ability to gather data about multiple neurons makes it easier to distinguish overlapping images from 
distinct categories. 
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  The utilization of Self-Organizing Maps (SOM) in video image classification provides valuable insights and 

enhanced classification capabilities. Through neuron competition and weight adjustment, the network extracts 
topological features and enables the classification of complex feature present in video images. By gathering data 
from multiple neurons, the SOM network improves the classification of overlapping images from different 
categories. The SOM network's architecture and learning process contribute to more accurate and comprehensive 
video image classification, facilitating various applications in video recognition and analysis. 

3.4 Temporal Sharing Neural Networks  

 
   To fully comprehend the true meaning behind a video, it is essential to connect the visual elements in the 

chronological order in which they appear to uncover their true significance. Recurrent neural networks have 
demonstrated remarkable effectiveness in this regard; they can be classified into three different types based on the 
mathematical operations and relationships involved in training the network. In our proposed work, we will explore 
the applications of these recurrent neural network types and analyze their performance in hand gesture video analysis 
and understanding tasks. 

 

3.4.1 Recurrent Neural Network (RNN) 
 

Recurrent neural network (RNN) is well-suited for processing historical image frames in video due to its ability 
to share weights cyclically across time through the hidden layer states. The learning process is mathematically 
formulated in expressions (10 to 13). Since RNN can accumulate and calculate weights over time during the training, 
it's important to consider a series of events occurring over a certain period to fully understand a significant 
movement inside a video. This allows for accurate analysis and capture of significant movements within the video. 

 
       h (t) = bh + Wsh S (t-1) + WFh F(t)                             (10) 

     S (t) = Φ (h (t))                                                     (11)     
     C (t)= bC + WCh h (t)                                             (12)  
     y (t) = Loss(C (t) )                                                 (13)  

 In these equations, 'F' symbolizes an individual image frame feature within a hand gesture video clip, where each 
image frame is influenced by the preceding one. 'W' denotes the weight vector associated with the inputs from the 
video clip across various time steps’t’ spanning both the hidden and output layers. Consequently, 'h' and 'S' 
correspond to the image frames within a single video clip at a particular time step inside the hidden layer. 
Furthermore, 'C' and 'y' signify the predictions generated by the output layer at a specific time point within one video 
clip. During forward propagation in the network, each layer processes multiple image frames that collectively form 
a video clip. The input frames are sequentially passed through the hidden layer states, one batch at a time, and 
activated using the nonlinear activation function Φ. The first two equations (10, 11) correspond to the hidden layer, 
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while the last two equations (12, 13) pertain to the output (prediction) layer. The prediction (output) layer 
incorporates a multi-loss function, allowing for predictions to be represented as maximizing neuron-wise values 
across multiple image frames. The neuron-wise layer with the highest dominance yields the best result, thus 
characterizing the RNN topology as "many-to-many" (refer to Figure 1). 

Overall, RNN process involves the sequential processing of video image frame features, the utilization of nonlinear 
activation functions, and the application of a multi-loss function for prediction in the output layer. This is followed 
by backward to adjusting the weights. 

 

 

 

 
  
 
 
 
 
 

3.4.2 Long short-term memory (LSTM) 
 
The network uses the same primary algorithm as RNN training, with an additional hidden layer Figuare2. Each layer 
has its own activation function Φ for each state, the first layer using a sigmoid function (14) and the second layer 
using double from the activation function of tanh (15). The output layer is represented as (16) and (17). As every 
layer is a feed-forward neural network with a nonlinear function, the loss function chosen for the output layer is 
cross-entropy log function explained in (22). 
 

                                                                                    I = Φ (  WFIFt +WhI ht-1 + bI)                                          (14) 
                                                                                    S = Φ (Φ (WFsFt +Whs ht-1 +bs ))                                    (15) 

     Ct = bC + WC St                                                              (16) 
     Yt = Loss (Ct)                                                                (17) 

 

   In a video clip of hand gesture images, the current image frame feature F depends upon the previous image frame 
feature h. Within the hidden layer, a weight vector W is linked to each image frame feature in the video clip. The 
output layer is represented as C and y. The network undergoes a forward pass, followed by a backward pass, to fine-
tune the weights. 

Figure 1: proposed RNN layers. 
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3.4.3 Gated recurrent units (Gru) 
Notably, the GRU network shares the same design and training algorithm with the LSTM network. As depicted in 
Figure 2. It consists of two hidden layers, as shown in equations (18) and (19). The main difference lies in the second 
layer, where a single activation function Φ of tanh is employed, as illustrated in equation (19). 

The output layer is represented by equations (20) and (21), which utilize the cross-entropy log as the chosen loss 
function as depicted in (22). 

 I = Φ ( WIFFt +WhI ht-1 + bI)                                 (18) 
                                                                                      S = Φ (WFsFt +Whs ht-1 +bs)                                  (19) 
                                                                                      Ct = bC + WC St                                                     (20) 
                                                                                      Yt = Loss (Ct)                                                        (21) 
 
In the context of a single video clip capturing hand gestures, much like the principles explained in LSTM, the 

current video image frame feature F depends on the previous video image frame feature h. Weight vectors W are 
associated with each image frame feature within the video clip across hidden layer. The output layer is represented 
by C and y. The network undergoes a feed forward process, followed by a backward pass to adjust the weights. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4 Proposed Methodology 
 

 The general methodology consists of four stages, illustrated in Figure 3. The first stage involves organizing and 
preparing the data to format the videos to fit the proposed models. This is followed by training the CNN network 
and extracting the necessary features, which prepares the system to handle the two proposed neural network models. 
The final stage involves making the final decision by sharing the predicted outcomes from each proposed model, 
using the decision system of the proposed adaptive AdaBoost. 

 
 
 
 
 

 
 

Figure 2: proposed LSTM and GRU layers. 
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4.1 Video Gesture description 

 
We analyzed two multimodal datasets of sign language videos: Chalearn 2014 [22] and ChalearnIsoGD [23]. 

Chalearn 2014 contains 14,000 continuous samples of single signers of 20 Italian gestures performed by 27 people, 
while ChalearnIsoGD contains 35,878 samples of 249 hand gestures representing words from 30 different lexicons, 
gestures performed by 21  different signers. Both datasets are in RGB and depth video format, with a resolution of 
640 x 480. For each signer of Chalearn 2014 [22] , skeleton data is provided. 

 Notably, the testing videos of Chalearn 2014 (3,555 videos) may include signers who also appear in the training 
set, exhibiting different hand gestures. In contrast, the testing videos of ChalearnIsoGD (6,271 videos) do not 
contain repeated actions from individual signers; instead, new signers perform the gestures, challenging the dataset's 
recognition performance. We preprocessed both datasets by segmenting continuous sample videos into separated 
videos containing meaningful hand movements, omitting static movements. We also resized the dimensions of each 
frame image in the Chalearn 2014 dataset to match the corresponding skeletal structure, minimizing the effect of 
background confusion during classification. 

 

4.2 CNN Training and Feature Extraction 
 
The architecture of the employed CNN is composed of four blocks, each consisting of two convolutional layers with 
a 3x3 kernel filter. An RLU activation function is applied after each convolutional layer. Following each block, 
max-pooling is performed. The filter sizes for the four blocks are 16, 32, 64, and 128, respectively. Two fully 
connected layers with 2048 neurons each follow the convolutional layers. A dropout rate of 0.5 is applied to reduce 
overfitting. The network is trained using the cross-entropy log loss function, which calculates the difference between 
the predicted output and the ground truth (22). 
 

-∑ g(x) log p(x)                                                        (22) 
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Figure 3: The Proposed Methodology Architecture. 
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The membership probability of the target class x concerning other classes y and weights w is estimated by 
maximizing the joint probability of x and y given w, which can be represented as P(x, y|w). The likelihood of the 
estimation is maximized using stochastic gradient descent with momentum and a learning rate as optimization 
methods to adjust the weights. The weight initialization method of Xavier is used, which determines the initialization 
scale based on the filter length (n), as shown in (23).  

W=�2
𝑛𝑛
                                                                         (23) 

For training CNN network, a single frame is used as a linear process to adjust the weights. The video frames have 
been scanned sequentially to obtain the inputs for training CNN network. The training procedure in this scenario is 
represented by the linear operation in (24) for each convolutional layer. The video images were scanned one after 
another. 

Ok=I k-1(x1,y1,c,) * W k (x,y,f) + b k                           (24) 
 

Here, W represents the learning weight associated with a kernel of size (x, y) of (f ) filters, b are the biases on the 
epoch time k with input image I of dimension (x1, y1) and number of chanels c. 
Multiframe is the second scenario for training the CNN network. The first convolution layer of the previously 
mentioned network design is changed to 3dconv across 32 frames (the recommended number of frames to recognize 
one gesture movement) by feeding it across the dimension of channel. Hence, the linear operation for the whole 
process can be represented as follows: 

Ok=Ik-1 (x,y,t) * Wk (xx , yy,f) +b k                             (25) 
 

  In this context, ( I ) stands for the input image frame composed of temporal shared image frames across time (t) 
with image dimensions x and y. These frames are multiplied by training weights (W) corresponding to a kernel filter 
of size (xx, yy) for (f) filter. Additionally, a bias term (b) is introduced as a constant to ensure data balance during 
the epoch number (k). 

Regarding CNN feature extraction, the features are obtained from the last layer of the well-trained CNN on the 
training image set. This layer provides a dense representation of the visual features for image data classification. 
The process involves extracting features from image X using the well-trained CNN network, applying the optimally 
learned weights W to all convolutional layers of the deep network up to the last flattening layer, without performing 
weight adjustment. This results in the extraction of feature F, as depicted in equation (26).  

Fk=Xk-1 * Wk                                                         (26) 

 As a result, the output of the last fully connected layer is a feature vector of size 2048, following the network design 
described earlier. This feature vector serves as a dense representation of the visual feature. 
 

4.3 Proposed Models 

  In this study, several neural network models have been proposed to generate new frame-wise features by enhancing 
the performance of CNN features. The SOM network and RBF network were trained on CNN features, composite 
features were constructed by leveraging the strengths of each participating neural network. These composite features 
were utilized to train new networks with various designs for time-sharing recurrent networks. The proposed models 
can be classified into two categories based on the nature of the connection between the temporal-sharing neural 
networks, as outlined below: 
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4.3.1 Single Stream Recurrent Neural Network 
 

This recognition model utilizes an RNN to train a video clip, leveraging a comprehensive set of diverse features for 
each image frame. The training process involves extracting features from a CNN, and both SOM and RBFN 
networks are employed to utilize and enhance these CNN features. Subsequently, an RNN network is employed to 
train the video clip. The process incorporates frame-level features extracted from standard enhancing networks 
(SOM and RBF) and combines them by concatenation with the CNN features in a unified layer, forming a 
comprehensive representation of each image frame. Furthermore, the enhanced features extracted from each 
standard network are organized into separate layers, creating different types of dense features for each image frame. 
This enables the RNN network to effectively train on the video clip using various processing pipelines, as illustrated 
in Figure 4. The overall process yields seven distinct types of dense features (frame-wise features) extracted from 
different training pipelines, as summarized in Table (1), with each type representing a single image frame. As a 
result, the RNN is trained using the diverse features obtained from multiple pipelines, following the procedures 
outlined in (1). 
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Figure 4: Structure of One Stream Recurrent Neural Network Model. 
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The feature vector extracted from the CNN is then utilized to train both the RBFN and SOM models to obtain new 
features. These new features, along with the feature frames, are fed side by side to train the RNN. 

 
For the standard RBF network, the features F from the image in the training set are extracted by matching the 
optimal weights W obtained from the previously trained RBF with the outputs of the activation function φ. The 
activation function φ represents the distance between the ideal beta and the locations of the ideal cluster centers of 
all image features in the training set. This can be expressed as in expression (27). On the other hand, the features of 
the SOM network are determined by considering the label of the closest distance D between each image feature (i) 
in the image training set T and the optimal weights W in the SOM output layer. This is illustrated in expression 
(28):        
                                                                                                F= φ*W                                                                  (27) 

                                                                                           D   = �∑ �𝑇𝑇𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1                                          (28)  

 
These extracted features from both the RBFN and SOM networks are then used in conjunction with the feature 
frames to train the RNN model. 
 

4.3.2 Multi Stream Recurrent Neural Network 

     In this phase, a time-shared recognizer is trained by utilizing diverse predictors derived from other time-shared 
recognizers that have been trained with different enhanced features. The proposed network model is a deeper design 
that incorporates features of recurrent multi-stream networks. In this model, the features extracted from RNN 

Procedure 1 Training of single Stream Model: SSM (Xn ,Yn)  
/*X is a set of CNN features along with the corresponding labels Y for n images */ 
 

1. Retrieve set of B and S Features from training each of RBF networks and SOM for n images. 

 
    1.1          Bn=train RBF (Xn ,Yn) 
    1.2          Sn=train SOM (Xn) 
 

2. Extract set of vectors V of length n from different features for n images . 
 
    2.1          V1n= Bn  ∪  Sn            
    2.2          V2n= Xn   ∪  Bn 
    2.3          V3n= Xn  ∪ Sn 

2.4          V4n= Xn  ∪ Sn ∪  Bn 

 
3. Train the RNN using various sets of feature vectors to obtain corresponding sets of prediction values P 

and their associated scores S for n images.  
 
     3.1         Return ( P1n ,S1n) =  Rnn (Xn ,Yn) 
     3.2         Return ( P2n  ,S2n) = Rnn (Bn,Yn) 
     3.3         Return ( P3n ,S3n) = Rnn (Sn,Yn) 
     3.4         Return ( P4n ,S4n) = Rnn (V1n,Yn) 
     3.5         Return ( P5n ,S5n) = Rnn (V2n,Yn) 
     3.6         Return ( P6n ,S6n) = Rnn (V3n,Yn) 
     3.7         Return ( P7n ,S7n) = Rnn (V4n,Yn) 
End      
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training, utilizing both CNN features and the enhanced features from training each of the RBFN and SOM networks 
separately, are reintroduced into another temporal sharing network. Specifically, only the isolated training pipelines 
from the previously proposed models are fed into an additional recurrent temporal sharing network. Since we did 
not obtain significant differences from the other types of the previously extracted features, we chose to include these 
types only. This step is performed after integrating all the extracted features from the isolated trained pipelines into 
a newly created concatenated feature layer to represent a single image frame. Consequently, an LSTM, GRU, or 
RNN network is trained on the video clip using the newly constructed density of image frame features. This training 
process utilizes the modified density of image frame features (frame-wise features) obtained from the concatenation 
process. The detailed process is elucidated in Procedure (2), while the corresponding flow of the process is depicted 
in Figure 5. 

 

 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Procedure2 Training of Multi Stream Recurrent Model: MSRM (Xn,Yn) 
 
 /*X is a set of CNN features along with the corresponding labels Y for n images*/ 
 
     1    Retrieve set of B and S Features from training each of RBF and SOM for n images. 
 
             1.1     Bn= RBF (Xn , Yn) 
             1.1     Sn= SOM (Xn) 
 
     2    Derive Various Features, denoted as F for n images, from training of RNN using different input 
           features .  
             2.1      F1n = RNN (Xn, Yn) 
             2.2      F2n = RNN (Bn, Yn) 
             2.3      F3n = RNN (Sn, Yn) 
 
     3    concatenate features in V1 for n images. 
              
             3.1     V1n = F1n ∪ F2n∪ F3n 
 
     4   Find set of prediction values P with the corresponding scores S for n images from training each of 
          LSTM and GRU.  
             4.1   Return (P8n , S8n) = LSTM (V1n,Yn) 
             4.2   Return (P9n , S9n) = GRU (V2n,Yn)  
             4.3   Return (P10n , S10n) = GRU (V3n,Yn) 
End 
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In the previous section, we discussed the extraction of image features from CNN, RBF, and SOM models on the 

training image sets. The process of extracting image features from each kind of recurrent neural network involves 
applying the optimal weights W from all the predictors P of a well-trained network on the time-shared image features 
over time t. This process is described by equation (29), where X represents a clip of image frames during training. 
These recurrent neural networks are capable of extracting features that represent the entire image clip in the video. 
The overall length of the extracted features is determined by the length of the predictor, which corresponds to the 
number of classes, multiplied by the length of the clip images. 

 
 

F=X (t) * WP (t)                                                         (29) 

 
4.4 Decision System Mechanism  
  

  In order to assess the effectiveness of the proposed system, the pipelines developed from each neural network 
model presented in this study were applied to unseen data, known as the test dataset. Following the same approach 
for each pipeline of the neural network model on the test dataset, the optimal weights obtained from training were 
utilized without requiring feedback for adjustments. Therefore, the mechanism of the decision system consists of 

Figure 5: Structure of Multi Stream Recurrent Neural Network Model. 
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two stages: the individual predictions generated by each proposed network model, known as the prediction phase, 
followed by the integration stage, where the prediction results from all the proposed neural network models are 
combined. 

 

I. Prediction Phase 

 
   The process in temporal sharing networks, as mentioned earlier, follows a many-to-many approach, where a 

series of image frames predicts a series of image frames. Consequently, each image frame corresponds to a set of 
prediction nodes, with the number of nodes equal to the total number of classes in the problem. The objective of 
recurrent networks is to maximize their performance, and thus the winning neuron that classifies a frame is the node 
with the highest prediction value. Therefore, the winning frame of a clip is the frame with the highest prediction 
value. Since all the proposed models in this work employ a recurrent network with temporal sharing within a clip, 
the prediction for each model needs to be performed at the clip level. 

Hence, the prediction phase in a presented model can be divided into two steps. Firstly, the average of the 
corresponding prediction values across each prediction layer in the recurrent network is computed. Equation (30) 
represents the prediction average, resulting in a single prediction layer that encompasses the entire clip. 

P = ∑ ∑ Fij
n

𝒏𝒏
𝒋𝒋=𝟏𝟏

𝒎𝒎
𝒊𝒊=𝟏𝟏                                                          (30) 

Here, P represents a vector of n prediction nodes for one clip, where F is a set of vectors from m frame layers 
for that clip, each containing n prediction nodes. 

Secondly, to obtain the overall model prediction score, the average function is followed by the maximization 
function, as indicated in (31). 

Score= ∀𝐧𝐧Argmax(𝑷𝑷𝒏𝒏)                                           (31) 
 

In this equation, P represents the vector of prediction layers with a length of n for one model, and Score 
represents the final score prediction for that model's clip. 

 

II. Integration Phase 
 
  The integration process of all the presented network models across different pipelines aims to leverage the 

prediction properties of each model, ultimately improving the final class decision outcome. This process incorporates 
adaptive AdaBoost to enhance the overall decision-making of the ten network models discussed earlier. To facilitate 
integration among all the proposed network models in this work, a four-stage decision system has been devised to 
ensure accuracy and improve the weak predictions from each model. The initial stage of integration involves a 
refinement process that capitalizes on the highest repeated prediction score Highest(Score)  among all the previously 
presented models (32). 
S = {s1, s2, …, sm}be the set of m scores predicted by the multimodels. 
Rep(si) be the function that counts the number of times each score si appears in S. 
BestModel(si) be the function that identifies the model with the best performance associated with score (si). 
The mathematical expression for the process is as follows: 
 

                                                 Highest(S) = �
argmax (si ϵ DuplicateScores)(si), if DuplicateScores ≠ 0  
argmax (si ϵ S)�BestModel (si)�, if DuplicateScores =  0 �     (32)    

Where: 
DuplicateScores = {si | Rep(si) > 1} is the set of scores with duplicates. 
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argmax (si ϵ DuplicateScores)(si) selects the score with the highest prediction value among the scores in  
DuplicateScores. The expression "argmax (si ϵ S) BestModel (si))" selects the score associated with the model that  
exhibits the best overall performance, indicating the corresponding maximum prediction value among all scores in S 
 when there are no duplicates. 

 
   In the second stage, the acquired predicted values from all the proposed models have been organized into two 

distinct categories: weak and strong. This categorization process has been facilitated through the utilization of the 
'Isolate' function, which relies on the accuracy values extracted from the scores derived from the 'Highest' function. 
As a result, the classes that demonstrate the highest accuracy levels are designated as strong, while those that do not 
meet this threshold are categorized as weak. Moving on to the subsequent third stage, the weak categories undergo 
Adaboost training, as outlined in Algorithm 1, while deliberately excluding the strong categories from the training 
process. 

 During the final stage, the previously separated Weak and Strong categorises are harmoniously merged through 
a combination function, leading to an optimized training experience for both categories. This innovative approach 
significantly reduces the overall training time required for AdaBoost, enhancing its efficiency. 

 
  AdaBoost [24] is an ensemble learning technique that leverages the output predicted classes from the proposed 

multiple models to construct a strong classifier. Through a sequence of iterations, it focuses on models previously 
misclassified from the Weak categories, by adjusting their prediction weights to reduce learning errors. The final 
classification decision is made by substituting the prediction values of these misclassified with a new different 
weight. This process is carried out for each model in the multimodel problem, resulting in a set of trained AdaBoost 
models. Each proposed model is independently trained to distinguish one model class from the others in a one-vs-
all approach, employing positive and negative representations. The model with the highest learning class value is 
selected as the winner, enhancing its predictive capability (p) among the K models, as explained in (33).  

 
 

F(P) = Argmax [P(K)]                                               (33) 
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The practical implementation diagram of our proposed method is illustrated in Figure 6, showcasing the overall 
process. Additionally, Algorithm 2 provides a comprehensive outline of the steps involved. In contrast, for a detailed 
and step-by-step evaluation process of the entire workflow, refer to Algorithm 1. The decision system functions in 
two distinct phases: the first phase focuses on decision-making for each proposed network model, while the second 
phase involves the integration of decisions from all the proposed models. 

Algorithm1: Model Integration (P, Sc) 
Input:     P is a set of L network model prediction values for N images, and Sc is a corresponding set of scores. 

Output:  FP The final prediction scores for N images. 
Begin 
• DScore         Highest(Sc) 

   - Find 'DScore', the score with the highest repetition as defined in expression (32) for N images. 
•  Acc            DScore  /* find the accuracy ‘Acc’ for each category*/ 
• Isolate(P, Sc, Acc) 

   - Using 'Acc' isolate 'P' and 'Sc' into two sets: 
          - ‘W(P)’ for prediction values of Weak categories and ‘S(P)’ for Strong categories among the L network  
               models with a length of L1. 
          - ‘W(Sc)’ for scores of Weak categories and ‘S(Sc)’ for Strong categories among the L network models 
               with a length of L2. 

For C from 1 to L   /* Iterate over L network models*/  

1.  Terror         0   /* Initialize the total error to zero*/ 
2.  WC(Sc)            W(Sc) 

                  - Score transformation: where the scores of the "C" model are replaced with a value of (+1), 
                    while the scores of all  other models   are substituted by (-1). 
3. W         1/length(WC(Sc)) /* Initialize the weight 'W'  */ 

 
For j from 1 to T /* Perform T iterations*/ 

a.   [EC, Err]           classifier(W(P), WC(Sc),W)  

      - Apply a threshold classifier to 'W(P)' after assigns (+) for model C and (-) for other models.  
      - 'EC' is the estimated model, and 'Err' represents the initial error. 
b.    Alpha          1/2 * (log(1-Err) / Err) /* Calculate 'Alpha'*/ 
c.    W j+1         (Wj ∗ eAlpha∗WC(Sc) ∗EC) / ∑ (Wj ∗ eAlpha∗WC(Sc) ∗EC  )𝑛𝑛

𝑖𝑖=1    /* Adjust weights 'W'*/ 
d.    ET           Sign (∑ 𝐸𝐸𝐶𝐶 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑛𝑛

𝑖𝑖=1 )   
       - Calculate the total estimation 'ET'. 
       - ‘sign’function returns 1 for output greater than 0 and -1 for output less than 0. 
e.    Terror           Terror+ ∑ (𝐸𝐸𝐸𝐸 ≠W(P))

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(W(P))
𝑛𝑛
𝑖𝑖=1     /* Update the total error 'Terror'*/ 

                    f.     If Terror = 0 then break /* Stop if the error becomes zero.*/ 
         End 
4. ModelC          𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (∑ 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎 ∗ 𝐸𝐸𝐶𝐶𝑛𝑛

𝑖𝑖=1  )    

-  accumulate all predictions from ‘ModelC’ across L models, each with a length of L1, as the  
    training follows a one-vs-all approach. 
- ‘sign’function returns 1 for output greater than 0 and -1 for output less than 0. 

 End 
• PP          Max (Model C)   /* Select the Final prediction score 'PP' for Weak categories of length L1*/ 
• FP         Combine (PP, S(Sc)) 

/* Combine scores from strong 'S' categories with 'PP' to produce the final score prediction 'FP' for N images*/ 
End 
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Figure 6: The overall structure of the proposed work, depicting the networking pipelines. 
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Algorithm 2: Overall steps for the proposed work. 
Input:  CNN features of training image sets T= {(X1,Y1),(X2,Y2),…(Xn, Yn )}, 
             where y is the label of feature X of length n.  
Output:  a set of optimal scores O of length n images. 
Begin 
  
       1  [Pmn , Smn ]            SSM (Xn, Yn)  

           - a set of (m =7) prediction values P, along with their corresponding scores S, for all images of length n  

              as outlined in procedure 1 is out  . 

        2  [Pkn , Skn]         MSRM (Xn, Yn)  

           - a set of (K=2) prediction values P, along with their corresponding scores S, for all images of length n  

             as outlined in procedure 2. 

        3   XXn           Concat (Pkn,Pmn) /* set ‘XX’ of length (h=10) as a concatenation for all set of the prediction values */ 

        4   Classn         Concat (Sk,Sm )  /* set ‘Class’ of length (h=10) as a concatenation for all set of Scores */ 

        5   On         Models Integration (XXn, Classn) /*Apply Adaptive Decision as in Algorithm1 for n images*/ 

End   
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4.5 Evaluation Metrics 
 

  In this study, we have employed evaluation metrics to effectively assess the performance of the proposed 
models. The accuracy metric, as defined in equation (34), has been utilized to quantify the proportion of correctly 
predicted gesture videos (G) out of the total number of gesture videos (T) in the test dataset. The accuracy is 
presented as a percentage: 

  Accuracy= G
T 

 𝑋𝑋 100                                                  (34) 
       To facilitate a meaningful comparison of our results with prior research, we also computed the Jaccard index 
(35). This index measures the degree of similarity within the tested sample videos by evaluating the binary 
intersection of predicted values (O) and ground truth labels (T), divided by the binary union of these prediction 
results and ground truth labels across all video samples (V). In each video sample, an individual signer performs a 
continuous array of hand gestures belonging to various gesture classes (C). 

                                                                                             Jaccard = 1
𝑉𝑉𝑉𝑉
∑ ∑ �𝑇𝑇𝑣𝑣,𝑐𝑐∩𝑂𝑂𝑣𝑣,𝑐𝑐

𝑇𝑇𝑣𝑣,𝑐𝑐∪𝑂𝑂𝑣𝑣,𝑐𝑐
�𝐶𝐶

𝑐𝑐=1
𝑉𝑉
𝑣𝑣=1                                 (35) 

 
 

5 Experimental Results 
 

 The primary objective of this research is to demonstrate the effectiveness of the proposed adaptive AdaBoost 
method on hand gesture recognition videos. To evaluate our approach, we have employed the evaluation protocols 
designed for continuous gesture recognition on the test dataset, which mainly utilizes the Jaccard index as the 
evaluation metric (where higher values indicate better performance) in addition to accuracy. The results of these 
experiments have been detailed and analyzed to assess the effectiveness of the proposed methods. 
 

5.1 Training of Neural Networks 
 

  This section delves into the training of numerous neural networks, each characterized by its own unique set of 
parameters and methods. A comprehensive discussion of these networks is presented below. 

 

5.1.1 Convolutional Neural Network (CNN) Training  
 

    During the training phase, the Convolutional Neural Network (CNN) was trained using two approaches on 
the Chalearn 2014 dataset. This dataset consisted of 268,517 individual image frames extracted from 6,400 video 
gestures. Additionally, the CNN was trained on the ChalearnIsoGD dataset, of which only the first thirty categories 
dealt, including mutual, Italian, and Chinese numbers. The ChalearnIsoGD dataset comprised 267,329 single image 
frames. The evaluation was conducted on the corresponding testing videos, featuring categories 1-30. 

The first approach involved training the CNN on single frames of resized color images, each sized at 224x224 
pixels. The second approach focused on training the network using multiple frames or clips, with each clip 
containing 32 frames of resized color images with dimensions of 64x64 pixels. In total, this resulted in 171,600 
clips of frames for Chalearn 2014 and 159,449 clips for ChalearnIsoGD. For ChalearnIsoGD, the weights for 
training the network were fine-tuned from the pre-trained AlexNet [25] network on ImageNet. An additional fully 
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connected layer of 2048 neurons, preceded by a RELU activation layer, was added to match the dimensions of the 
network used for the first dataset. This approach aimed to gather meaningful features from the fine-tuning process 
to train the second network, thus avoiding overfitting. 

A comparison between these two methods is presented in Figure (7). Regardless of the training approach, the 
CNN was trained with a learning rate of 0.001, weight decay of 0.0005, and momentum of 0.9, using SGD as the 
optimizer. The training was conducted using a batch size of 36. The MatConvNet MATLAB toolbox, which is a 
part of the VLFeat open-source library for computer vision, was used for training the deep convolutional neural 
network [26]. 

5.1.2 Radial Basis Function Network (RBFN) Training 
 
The Radial Basis Function Network (RBFN) underwent specialized training on the features extracted from the 

CNN to improve image frame recognition. To determine the number of initial centers for each category in RBFN 
clustering, we divided the length of the category by 120. The initial center values were selected at random within 
their respective categories. Notably, our clustering process was optimized by disregarding zero clusters that might 
be generated. This approach resulted in a variable-length sigma for each class, leading to a varying length of Beta, 
which is an accumulation of the sigmas from each class. Consequently, the RBFN achieved its peak output feature 
length of (5415) for Chalearn2014 and (6213) for ChalearnIsoGD. We employed MATLAB and a tutorial provided 
by Chris McCronick[27] for the manipulation of the RBF network, ensuring robust training and performance 
optimization. 

5.1.3 Self-Organizing Map (SOM) Training  
 

   The Self-Organizing Map (SOM) was trained on CNN features to enhance image frame recognition. For 
optimal performance, the SOM network was configured with 51x51 output neurons for both datasets, encompassing 
a total of 105 iterations. The determination of the iteration count and output layer neurons followed the methodology 
established by [28], which takes into account the overall dataset length. The initial learning rate was set at 0.01. 

 To determine the winning neuron on the output layer, we examined the weights of the neuron on the SOM 
output layer that best matched each data feature. As a result, the output feature length precisely matched the input 
feature length, which was 1x2048. For the training of the SOM network, we leveraged a MATLAB project designed 
for classifying handwritten digits, as provided by [29], on the same notebook previously mentioned.  

Considering the features obtained from training the CNN on multiple frames couldn't be directly employed for 
training standard neural networks (RBF and SOM), we opted to use the features extracted from training the CNN 
frame by frame in all our proposed models. This decision was influenced by the relatively short duration of the 
videos, each representing individual gestures. 

5.1.4 Temporal Sharing Neural Network Training 

  In this section, we present a detailed explanation of the training methodology employed for the Recurrent Neural 
Networks (RNNs) in our research. The RNN architecture utilized in our study follows a many-to-many design, 
where multiple input frames are processed, resulting in the generation of multiple corresponding outputs. This 
architecture is visually depicted in Figure 3. The hidden layer within the Recurrent Neural Networks is constructed 
as a multi-layer perceptron for each state. It facilitates the connection between the multiple input nodes and the 
hidden state nodes. To capture the intricate temporal dependencies present in the data, we incorporate the hyperbolic 
tangent (tanh) activation function. Notably, this activation function is applied alongside the sigmoid function, but 
only for the first hidden layer in each of the LSTM and GRU architectures. This combination of activation functions 
enhances the network's ability to capture and model complex temporal relationships. Furthermore, an essential 
aspect of the hidden layer is weight sharing with previous hidden states. This feature enables the network to 
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effectively leverage temporal information by retaining and utilizing knowledge from previous time steps. By sharing 
weights, the RNN can capture and propagate relevant information throughout the sequence, enhancing its ability to 
learn and make accurate predictions. The output layer of the RNNs operates as a multi-predictor for a clip of frames, 
establishing connections between the hidden layer and the final output. This layer plays a crucial role in mapping 
the learned representations from the hidden layer to the desired output format. To make predictions, we employ the 
softmax loss function, as defined in equation (13), which effectively predicts 'n' values for each state. In our specific 
case, 'n' corresponds to the 20 classes on which the network has been trained. The softmax loss function aids in 
producing probability distributions over the classes, enabling the network to make confident predictions based on 
the learned features. By utilizing this training methodology, the Recurrent Neural Networks in our research are 
capable of effectively processing multiple input frames, capturing temporal dependencies, and generating accurate 
predictions for the specific classes they have been trained on. 

 The input for our Recurrent Neural Networks comprises a sequence of image frames, each with a composite of 
neural network features. To effectively handle this input, we employ the sliding window technique on every gesture 
video, which systematically extracts sequential clips with a slight overlap within each clip containing only one 
frame. Notably, each clip is composed of 32 image frames, and we consider a single clip as an individual temporal 
sharing networks input. In instances where the last clip in a video falls short of the standard clip length, we pad it to 
match the required length. As a result, our presented recurrent neural networks are composed of 32 prediction layers. 
Each prediction layer is comprised of 20 predictor nodes for Chalearn2014 and 30 predictor nodes for 
ChalearnIsoGD , corresponding to the number of classes on which the network has been trained. This architecture 
allows for the accurate classification of visual video gesture within the dataset. 

Additionally, we presented a performance comparison in Figure 7. This comparison is provided to explain the 
improved CNN features. For clarity, we've denoted the network training paths with underscores (_) in the names of 
each pipeline, and the features from each network are concatenated in an additional layer, marked with a plus sign 
(+). 

 
  
 
 

Figure 7: Accuracy of different enhanced CNN features.  
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In Figure 7, we presented a comprehensive comparison among various structural network  that participated in 
the served models based on the accuracy score expression (34). Our observations reveal that the network evaluation 
varies depending on the type of network and its performance. Moreover, the RNN network has shown superiority 
over other networks in its training performance. 
 All networks contributing to the models served in this work were trained  on an Asus notebook equipped with an 
Intel(R) Core(TM) i5-7300HQ CPU running at 2.50 GHz, without utilizing GPU acceleration, and with 16GB of 
RAM. 
 

5.2 Training the proposed Models 
 

   In this section, we provide detailed insights into the training procedures for the models proposed in this study, all 
of which are meticulously designed to elevate the performance of hand gesture recognition. Different pipelines on 
the model of single stream recurrent neural network have generated a layer of feature vectors of various lengths. 
Therefore, we presented Table (1) explains the relationship between model pipelines and the total length of the 
corresponding feature vector layer of one frame on which an RNN was trained. 
 
 
 

 
 

 
 
 

   

 

   The length of the CNN image frame feature was 2048, as previously mentioned, corresponding to the output from 
the final fully connected layer. In contrast, the length of the Radial Basis Function Network (RBFN) feature for a 
single image frame was 5415 in Chalearn 2014 and 6213 in ChalearnIsoGD  . This length exhibits variability due 
to several factors, including the number of initial centers chosen for clustering and the variability of beta. In our 
specific case, the output feature was an aggregation of the centers for each category, resulting in a length equal to 
the category's data size divided by 120. 
Furthermore, the feature length of the Self-Organizing Map (SOM) for one image frame matched the length of the 
network's input image frame features, which was 2048. This alignment was due to the approach of determining the 
winning neuron's weights at the output layer by identifying the closest neuron weights trained in the SOM output 
layer for each feature of the input image frame. 

The predominance of the output results generated by RNN training has been observed, as depicted in Figure 7. To 
further illustrate the efficacy of RNN as a model for temporal sharing neural networks, we have presented an 
accuracy comparison using expression (34), as shown in Figure 8. This figure illustrates the efficiency of RNN 
when applied to each extracted feature from the pipeline of the first proposed model. 

In this regard, RNN has been trained on various types of features extracted from the previously proposed networks, 
either directly or through combinations in different arrangements, as explained in Figure 4. The training of RNN 
has been conducted on the extracted features detailed in Table (1). 

Name of Pipeline  Feature layer length 
Chalearn2014 ChalearnIsoGD 

CNN_RNN 2048 2048 
CNN_SOM_RNN 2048 2048 
CNN_RBFN_RNN 5415  6213 
(CNN+ CNN_SOM)_RNN  4096 4096 
(CNN+CNN_RBFN)_RNN 7463 8,261 
(CNN_SOM +CNN_RBFN)_RNN 7463 8,261 
(CNN+CNN_RBFN+CNN_SOM)_RNN 9511 10,309 

Table 1: network pipeline and length of the feature vector layer relationship. 
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 Figure 8 shows that the RNN trained on the features of multiple networks, each trained separately, outperformed 
the other models. This suggests that the RNN can recognize CNN features more accurately than CNN-enhanced 
features. However, a larger feature layer size can help the RNN achieve better recognition accuracy, even though 
the CNN variables are smaller than the improved ones. 

Thus, work has progressed to present another temporal sharing neural network, so that the inputs that has trained 
the final network are a multiple stream from a set of time sharing recurrent networks obtained from the previous 
stage, as explained before in the proposed models of Section (4.3.2), where the features have been extracted from 
the output layer of each recurrent network by accumulating each prediction output layer for all participating image 
frames, so that the length of the features was 640, since 20 predictions were accumulated for each frame with 32 
common output frames for Chalearn2014 and 960 for ChalearnIsoGD, since it has 30 category. The final length of 
the combining vector of the only two RNN streams, which were either LSTM or GRU, was (1280, 1920 )for each 
of Chalearn2014 and ChalearnIsoGD respictivly, while the final length vector of the three RNN streams was (1920, 
2,880) for each of Chalearn2014 and ChalearnIsoGD respictivly, and so on. It is worth noting that all kinds of 
temporal sharing neural networks were trained with a batch size of 100 and cells of 30 neurons on each state of the 
hidden and output layers, respectively, utilizing the optimizer RMSprop explained in equations (22, 23, and 24), 
and four iterations have been considered in training. The Matlab version from [30] was utilized to train each of 
RNN, LSTM and Gru networks. Table 2 shows the accuracy performance for the multistream network pipeline. 

 
 
 
 
 
 
 
 
 

 

Network Pipeline  Chlearn2014 ChalearnIsoGD  

Table 2: Multistream network model in two datasets 

Figure 8: Accuracy of one stream recurrent neural network. 
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ACC.% 
Feature 
Layer 
Length 

ACC.% 
Feature 
Layer 
Length 

(CNN_RNN+CNN_RBFN_RNN+CNN_SOM_RNN)_LSTM  
Fig. 5 

94.41 1920 52.1 2,880 

(CNN_RNN+CNN_RBFN_RNN+CNN_SOM_RNN)_GRU  
Fig.5 

93.91 1920 51.8 2,880 

(CNN_RNN+CNN_RBFN_RNN+CNN_SOM_RNN)_RNN  
Fig.5 

93.41 1920 51.5 2,880 

Although the multi-network model's feature layer is shorter than the feature layers of previous models, table 2 shows 
that it achieves better recognition accuracy. 

 

5.3 Decision System and Integrating the Proposed Models 
 
 
The integration model has been implemented through the evaluation phase, as explained in Section (4.4). All 

features from each pipeline model that ended with training a recurrent neural network have been shared in the 
decision system, in a total of ten models. As have been mentioned earlier, decision system of highest repetition 
score has been proposed before training AdaBoost to reduce the time of training, by isolating the full accurate 
predicted classes and making training focuses on the rest predicted classes of Weak evaluation, thus a better 
increasing in the right evaluation values, additional to, increasing the overall accuracy will be obtained with less 
training time. Figure 9 gives samples of Weak prediction and Strong predictions after applying the expression as in 
(32) of highest repetition score phase in decision system. 
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The weak clips in Figure 9 after applying the Isolate function as in (algorithm 1) highlight the significant role image 
frames overlapping plays in confusing recognition. Despite the considerable differences in the construction of 
prediction systems for recognition in this work, the similarity between image frames in terms of hand poses still 
contributes to the confusion observed.  Many image frames share a great resemblance either within the same clip or 

(A) Clip of Strong category “fame” (B) Clip of Weak category “vattene” 
 

(C) Clip of Weak category “perfetto” 

            

     
(D) Clip of Strong category “2” 

 
Figure 9: Examples of strong clip A and weak clips B & C from Chalearn2014 and 
                         strong clip D and weak clips E & F from ChalearnIsoGD 

(E)Clip of Weak category “11” 
 
 

(F) Clip of Weak category “12” 
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outside, leading to potential recognition errors. Although the temporal sequence is considered, the risk of confusion 
remains high due to the abundance of similar frames. Consequently, developing a decision system becomes 
necessary to aid in making accurate recognition decisions, particularly when multiple recognition decisions are 
involved. Training the system to determine the final winning decision effectively resolves this confusion. AdaBoost 
has demonstrated its quality in achieving the desired recognition accuracy, as indicated by the final accuracy results. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
After excluding the class that achieved full accuracy (one out of 20 classes in Chalearn2014), we applied 

adaptive AdaBoost to the remaining ten models and achieved a maximum accuracy of 99.2% after 4,000 iterations 
(see the confusion matrix in Figure 10). This metric provides insights into the effectiveness of the proposed  

 
 
 
 
 
 
 
After excluding the class that achieved full accuracy (one out of 20 classes in Chalearn2014), we applied 

adaptive AdaBoost to the remaining ten models and achieved a maximum accuracy of 99.2% after 4,000 iterations 
(see the confusion matrix in Figure 10). This metric provides insights into the effectiveness of the proposed system 
across all twenty hand gesture classes. Notably, the first class (representing the "Fame" gesture) achieved full 
recognition performance, while the remaining classes had lower accuracy. In ChalearnIsoGD, we applied adaptive 
AdaBoost without excluding any class, even though we did not find any class with full accuracy. After 4,000 
iterations, we achieved a final accuracy of 56.9%, as shown in the confusion matrix of Figure 11. 

 
 
 
 
 
 

 
 

 
 
 
 
 

(A ) Clip of Strong 
category “Ho” fame” 
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Figure 10: Recognition Confusion matrix of Chalearn2014 using adaptive AdaBoost. 
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Considering the adaptive nature of the AdaBoost method proposed in this study, which aims to improve 

recognition speed, we have presented Table 3, showcasing the execution time for data recognition. The table 
includes results obtained by using all classes, as well as results obtained by excluding the class with the highest 
accuracy performance. This comparison was conducted on both datasets utilized in this research. 

 
 
 
 
 
 
 
 

 
 
 
 

Figure 11: Rercognition Confusion matrix of IsoGD using adaptive AdaBoost. 

Table 3: Effect of the adaptive AdaBoost in the two datasets. 
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No. of shared classes in 

training the adaptive AdaBoost 

Execution time of  

Chalearn2014 in 

sec. 

Execution time of 

ChalearnIsoGD in 

sec. 

All 34.83 Sec. 36.61 Sec. 

Excluding one class of the highest accuracy 30.01  Sec. 34.20 Sec. 

Excluding two classes of the highest accuracy 28.21  Sec. 31.32 Sec. 

 
 
Table 3 shows that excluding the highest accuracy class from AdaBoost training speeds up the algorithm. 

Furthermore, a Jaccard index comparison (35) with previously published work on the test data of Chalearn2014 was 
presented in Table (4), along with the proposed network models of a multi-stream of different recurrent neural 
networks. In addition, the application of the decision system that integrates all the proposed models is done in two 
steps: first, using the decision system with the highest repetition score (32), and second, using the full adaptive 
AdaBoost of all models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 

 

  Table 4 in this study presents a comprehensive comparison of individual models and the integrated approach, 
demonstrating the effectiveness of our proposed method in addressing the challenge of overlapping hand gesture 
recognition. The table also provides a performance comparison with other established methods. However, it is 
important to clarify that our primary objective was not solely focused on direct competition with existing works. 
Instead, our main emphasis was on highlighting and validating the effectiveness of the distinctive features presented 
in our approach. 

 

Specifically, our approach targets the issue of overlap between similar image frames within a single clip for hand 
gestures belonging to different categories. This specific challenge had not been adequately addressed by any of the 
methods included in the comparison. Therefore, our focus was on introducing novel techniques to overcome this 

Method  name Jaccard 
(CNN_RNN+CNN_RBFN_RNN+CNN_SOM_RNN)_LSTM  Fig. 5 

 
0.9211 

 
(CNN_RNN+CNN_RBFN_RNN+CNN_SOM_RNN)_GRU  Fig.5 

 0.9191 

Decision system of highest repetition score  Fig.6, expression(32) 0.9303 

Adaptive Decision system Proposed work  Fig.6,Algorithm (2) 0.937 

Motion Dynamic+Fution [31] 0.923 

Temp Conv + LSTM [32] 0.906 

(Multi-Scale DNN) [33] 0.880 

(AdaBoost, HoG) [34] 0.822 
(MRF, KNN, PCA, HoG) [35] 0.826 

Table 4: proposed method comparison on Chalearn2014 with other works. 
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particular limitation and demonstrate their efficacy in improving overall recognition accuracy. By highlighting the 
unique contributions of our approach, we aimed to provide valuable insights into the field of hand gesture 
recognition and showcase the effectiveness of our proposed techniques. 

Conclusions and Future Works 

 
   In this study, we successfully integrated multiple recurrent neural network predictors in an adaptive decision 
system that significantly enhances the performances of hand gesture recognition in videos. By training a recurrent 
neural network with composite features derived from video gestures, we demonstrated effective improvement in 
recognition performance. The choice of features utilized in constructing these composite features played a crucial 
role in achieving the overall recognition accuracy. 
  Moreover, we presented models of recurrent neural networks that share composite features to generate new frame-
wise features by leveraging enhanced CNN features recovered from RBF and SOM networks. These network 
models exhibited great potential in enhancing the performance of features obtained through CNN training. 
Additionally, we discovered that combining CNN features with the improved extracted features can further enhance 
recognition by training a recurrent neural network capable of sharing the time with the features extracted from both 
CNN and the proposed pipeline models of training different neural networks. Our observations revealed that the 
spatiotemporal responses of RNN to the presented pipelines of enhanced features have diverse and significant effects 
on video recognition. 
   Our research findings indicate that different training streams of time-sharing neural networks can greatly improve 
recognition performance. We demonstrated this through various models of multi-stream recurrent networks, where 
time-sharing networks were scaled up by sharing a set of training pipelines from other time-sharing neural networks. 
Moreover, the integration of prediction outcomes of all proposed models by the introduced decision system 
showcased the efficient improvement in recognition performance. This is achieved by utilizing multiple training 
stream networks with other different single stream networks, especially in overlapped hand gestures. 
  While no significant differences were observed in the training performances of each type of temporal sharing 
recurrent neural network (RNN, LSTM, or GRU), our experimental results suggest that these subtle differences can 
still be leveraged to enhance the performance of the proposed decision system. The varied and distinct prediction 
values generated by each model contributed to the successful training of the proposed adaptive decision system of 
reduced execution time. 
 
  The significance of this research extends beyond controlled environments, as it addresses the real-world 
applicability of the developed system and its performance in diverse, practical scenarios. By effectively overcoming 
the challenges associated with hand gesture recognition, our work opens new avenues for the development of 
advanced human-machine interfaces and paves the way for improved communication through hand gestures. The 
adaptive decision-making system and the incorporation of diverse neural network architectures enhance the system's 
ability to perform accurately in real-world situations, where hand gestures may vary in complexity, context, and 
environmental conditions. This research contributes to the practical implementation of robust hand gesture 
recognition systems that can be applied in a wide range of applications, including interactive technologies, virtual 
reality, augmented reality, and assistive devices. 
 
  One significant challenge encountered during the implementation of this work was the limited availability of 
physical resources, particularly working memory. This issue primarily arose during the training phase when training 
neural networks with a single batch of data, as observed in the training of both the Self-Organizing Map (SOM) and 
Radial Basis Function (RBF) networks. Training these networks with a single batch of data often led to the depletion 
of the computer's workspace allocated for training. In contrast, training in the form of data packets, as seen in CNN 
training, provided better utilization of storage space for training purposes. Furthermore, it was noted that while the 
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CNN network's recognition performance improved when trained on a complete sequence of images rather than a 
single image frame, the RNN network exhibited greater effectiveness when trained to leverage the temporal 
properties extracted from the CNN network trained on an image frame. This observation can be attributed to the 
relatively short length of the video capturing the single hand gesture used in this study. To address the limitations 
faced in this work, we can focus on improving the performance of each neural network involved through extensive 
research and development. The existing wealth of research offers numerous avenues for enhancing and enriching 
the capabilities of these networks. Furthermore, in this work, the proposed time-shared neural network models, 
including both single and multi-stream models, were trained using composite features. These composite features 
were obtained by concatenating a set of features from different networks. The study found that increasing the size 
of the composite feature component resulted in improved recognition performance in the network. However, this 
increase in size also led to higher storage space and workspace consumption. To address this challenge, it is 
recommended to explore methods for compressing or reducing the size of the resulting composite feature. By finding 
ways to install or represent these features more efficiently, the overall size of the resulting feature can be shortened. 
This would help optimize storage space and workspace requirements without compromising the recognition 
performance of the network. 
 

In conclusion, this research highlights the importance of a comprehensive training pipeline and the integration 
of diverse neural network models to achieve substantial improvements in hand gesture recognition performance. 
These findings provide valuable insights for future research in this field, guiding the development of more effective 
and robust recognition systems either by discovering other ensemble learning techniques that combine multiple 
weak classifiers to create a strong classifier or by exploring other neural network of diverse design. Additionally, 
this research contributes to our understanding of sign language as a unique form of communication that relies on a 
combination of signs, facial expressions, and body language to convey meaning. This poses challenges for sign 
annotation and translation. The insights gained from this study can aid in addressing these challenges and advancing 
sign language recognition technologies. 
The discoveries made in this research have broad implications for various realms of human-machine interactions. 
They can be applied in gesture-based control systems, virtual reality, augmented reality, sign language recognition, 
and human-robot interactions. By enhancing the accuracy and robustness of hand gesture recognition, these findings 
open up new possibilities for more intuitive and efficient communication between humans and machines, enabling 
seamless human-machine interfaces. Overall, this research not only contributes to the field of hand gesture 
recognition but also has the potential to revolutionize how humans interact with machines, paving the way for 
innovative applications and advancements in diverse areas of human-machine interaction.  
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